

Rohrsysteme

TECEflex

TECHNISCHE INFORMATIONEN

Inhalt

Systembeschreibung	1-4
TECEflex PE-Xc/AL/PE-RT-Verbundrohr	1-4
TECEflex PE-Xc 5S-Rohr	1-5
Fittings	1-5
Druckhülsen	1-6
Einsatzgrenzen des TECEflex Systems	1-6
Einsatzgebiete	1-9
Trinkwasserinstallation	1-9
Desinfektion von Trinkwasserinstallationen	1-10
Anschluss an Warmwasserbereiter	1-11
Heizungsinstallation	1-11
Druckluftinstallation	1-12
Gasinstallation	1-12
Verarbeitungshinweise	1-13
Verbindung mit TECEflex Handwerkzeugen	1-13
Verbindung mit RazFaz-Akkuwerkzeug	1-14
Verbindung mit Presswerkzeug PMA	1-16
Wiederverwendung verpresster Fittings	1-17
Installationsrichtlinien	1-18
Allgemeine Hinweise	1-18
Biegeradien	1-20
Thermische Längenänderungen	1-20
Leitungsbefestigung	1-22
Leitungsführung von TECEflex Leitungen	1-22
Schallschutz	1-24
Brandschutz	1-26
Verlegetechnik von TECEflex Gasleitungen	1-27

Alle Angaben in den Technischen Informationen sind mit großer Sorgfalt zusammengestellt worden. Eine Gewähr für die Richtigkeit der dargestellten Informationen kann daraus jedoch nicht abgeleitet werden. TECE übernimmt keine Haftung für Schäden, die aus der Verwendung dieser Angaben resultieren. Texte und Abbildungen unterliegen dem Urheberschutzrecht.

Stand: November 2022

[©] Copyright 2022, TECE GmbH, Hollefeldstraße 57, D-48282 Emsdetten

Planung und Auslegung	1-29
Dämmung von Trinkwasser- und Heizungsrohrleitungen	1-29
Dimensionierung von Trinkwasseranlagen	1-31
Richtwerte und Montagezeiten	1-39
Spülen von Trinkwasseranlagen	1-39
Druckprüfung von Trinkwasseranlagen	1-39
Heizkörperanbindung	1-46
Druckluftinstallation	1-49
Planung einer Druckluftinstallation	1-49
Druckluftleitungen	1-50
Berechnungsgrundlagen für Druckluftinstallationen	1-51
Dimensionierung	1-51
Gasinstallation	1-53
Zertifizierung	1-53
Einsatzgrenzen	1-53
Schutz gegen Eingriffe Unbefugter	1-53
Bemessungsverfahren	1-54
Diagrammverfahren	1-54
Beispielrechnung mit dem Diagrammverfahren	1-56
Tabellenverfahren	1-58
Beispielrechnung mit dem Tabellenverfahren	1-58
Berechnungstabellen	1-62
Prüfvorschriften für TECEflex Gasleitungen	1-65
Inbetriebnahme	1-65
Software für TECEflex Gasinstallation	1-65
Flüssiggasinstallation mit TECEFlex	1-68
Bemessungsdiagramme	1-69
Beispielrechnung mit dem Digrammverfahren	1-71
Bemessungstabellen	1-72
Anhang	1-74
Verwendete Symbole und Kurzzeichen (TRGI)	1-74
Verwendete Einheiten (TRGI)	1-77
Formblätter zum Tabellenverfahren	1-77
Beständigkeitsliste PPSU	1-80

Systembeschreibung

TECEflex ist das universelle Installationssystem für die Trinkwasser-, Heizungs-, Druckluft- und Gasinstallation. Es stehen Vollkunststoff- und Verbundrohre zur Verfügung. Die Rohre werden mit der axialen Druckhülsentechnik – ohne Verwendung von O-Ringen – verbunden.

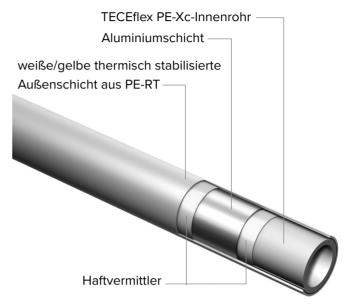
TECEflex bietet:

- · Verbindung ohne O-Ring
- druckverlustarme Verbindung durch Aufweittechnik
- · hohe Druck- und Temperaturbeständigkeit
- · hygienisch einwandfrei
- fehlertolerantes und damit äußerst sicheres System
- Unterputzmontage möglich
- · formstabile, biegefeste Verbundrohre
- ein Fitting für drei Rohrtypen somit keine Verwechslungsgefahr bei den Fittings und deutlich reduzierte Lagerhaltung
- · Axialpressverbinder mit geringer Querschnittsverengung

Rohrtypen

Das TECEflex System bietet für jede Installationsanwendung das passende Rohr:

- Verbundrohr für Trinkwasser-, Heizungs- und Druckluftanwendungen
- Verbundrohr gelb eingefärbt für die Gasinneninstallation
- PE-Xc-5S-Rohr für Trinkwasser-, Heizungs- und Druckluftanwendungen (Diffusionssperre innenliegend)


Einsatzgrenzen des TECEflex Systems

- geeignet fur die Trinkwasserinstallation nach Anwendungsklasse 2 und 10 bar gemäß ISO 10508 für Warmwasseranwendungen
- geeignet für die Heizungsinstallation nach Anwendungsklasse 5 und 6 bar gemäß ISO 10508 für Hochtemperaturanwendungen
- für die Gasinstallation bis 100 mbar innerhalb von Gebäuden. Für Gase der 2. Gasfamilie nach DVGW-Arbeitsblatt G 260. Es gelten die Vorschriften der TRGI 2008 (= DVGW-Arbeitsblatt G 600). Flüssiggasinstallationen sind nach der DVGW TRF 2012 zu erstellen.

Kurzzeitig kann das System mit 95 °C belastet werden, zu keinem Zeitpunkt aber dürfen die TECEflex Bauteile einer Temperatur von mehr als 100 °C ausgesetzt sein. Offene Flammen sind verboten. Bei Lötübergängen auf Kupferrohr muss zuerst der Lötübergang erstellt werden. Mit dem Anschluss des TECEflex Systemrohres ist so lange zu warten, bis der Fitting abgekühlt ist.

TECEflex PE-Xc/AL/PE-RT-Verbundrohr

Mehrschichtverbundrohr nach DIN EN ISO 21003
Typ MP-M mit weißer Deckschicht. Einsetzbar für die Trinkwasser-, Heizungs- und Drucklufinstallation.
Für die Gasinstallation dürfen ausschließlich die gelben Verbundrohre verwendet werden. Die Rohre sind mit W/G 100 gekennzeichnet. Es ist für Gasinneninstallation bis 100 mbar DVGW-zertifiziert.

Aufbau des TECEflex Verbundrohres

Bei dem PE-Xc/AL/PE-RT-Verbundrohr handelt es sich um ein Rohr mit stumpfverschweißter Aluminiumschicht. Die Materialkombination verringert die thermische Längenänderung und macht das Rohr gleichzeitig formbeständig und biegefest.

TECEflex Verbundrohre können wie folgt eingesetzt werden:

- in der Stockwerks- oder Wohnungsverteilung,
- im Keller-, Steigleitungs- und Aufputzbereich,
- im Unterputzbereich in der Dämmung,
- im Heizkörperanschlussbereich, auch aus der Sockelleiste heraus,
- als Fußboden- und Wandheizung etc.

Lieferformen:

- Dimensionen von 14-63 (14/16/20/25/32/40/50/63)
- · als Rollenware oder Stangenware
- · im Wellschutzrohr oder
- · als vorgedämmte Varianten
- gelb eingefärbt für die Gasinstallation

Vorteile des TECEflex Verbundrohres:

- Universalrohr für Sanitär, Heizung, Druckluft und Gas = ein Rohr für alle Anwendungsbereiche
- · Längenausdehnung ähnlich der eines Metallrohres
- · optisch ansprechende weiße bzw. gelbe Deckschicht
- leichte Verlegbarkeit, da biegefest und formbeständig
- · korrosionsbeständig
- beständig gegen Heizungsinhibitoren
- · Fremd- und Eigenüberwachung
- · hervorragende Zeitstandsfestigkeit
- · DVGW, TÜV und DIN CERTCO zertifiziert
- geeignet für die Trinkwasserinstallation nach Anwendungsklasse 2 und 10 bar gemäß ISO 10508 für Warmwasseranwendungen
- geeignet für die Heizungsinstallation nach Anwendungsklasse 5 und 10 bar gemäß ISO 10508

In seltenen Fällen können im Betrieb vereinzelt an der Rohroberfläche der TECEflex PE-Xc/Al/PE-RT-Verbundrohre kleine Blasen auftreten. Diese Blasen stellen keine Minderung der Gebrauchsfähigkeit dar und sind unkritisch.

TECEflex PE-Xc 5S-Rohr

Bei den TECEflex 5S-Vollkunststoffrohren handelt es sich um Verbundrohre nach Din EN ISO 21003 Typ MP-P. Sie sind mit einer innenliegenden Diffusionssperre ausgerüstet und so optimal gegen widrige Baustellengegebenheiten geschützt. Die Rohre sind gegen Außenfeuchte, wie zum Beispiel Kondenswasser, unempfindlich. Sie sind für die Trinkwasser-, Heizungs- und Druckluftinstallation geeignet:

- geeignet für die Trinkwasserinstallation nach Anwendungsklasse 2 und 10 bar gemäß ISO 10508 für Warmwasseranwendungen
- geeignet für die Heizungsinstallation nach Anwendungsklasse 5 und 6 bar gemäß ISO 10508

Die TECEflex PE-Xc 5S-Rohre dürfen nicht in der Gasinstallation verwendet werden.

Lieferformen:

- Dimension 16 und 20
- · als Rollenware
- · im schwarzen Wellschutzrohr

Aufbau des TECEflex PE-Xc 5S Rohres

Fittings

Das TECEflex System bietet Fittings in drei Werkstoffqualitäten an. Alle Fittings sind sowohl für die TECEflex Aluminiumverbundrohre als auch für die Vollkunststoffrohre geeignet.

Rotguss-Siliziumbronzefittings#

Als international arbeitender Systemanbieter stellt TECE Produkte aus Rotguss auf den international einheitlich verwendbaren Werkstoff Siliziumbronze um. Die Verarbeitungs- und Materialeigenschaften sind gleichwertig, Siliziumbronze ist im direkten Vergleich etwas heller als Rotguss. Mischinstallationen aus Rotguss und Siliziumbronze sind uneingeschränkt möglich. Beide Werkstoffe sind auf der Bewertungsgrundlage fur metallene Werkstoffe im Kontakt mit Trinkwasser gelistet (UBA Positivliste). Sie erfüllen somit die Anforderungen nach § 17 Absatz 3 der Trinkwasserverordnung. Die Artikelnummern bleiben unverändert.

Die Rotguss-Siliziumbronzefittings sind einsetzbar für

- für die Trinkwasserinstallation,
- · für die Gasinstallation,
- für die Heizungsinstallation,
- · für die Druckluftinstallation.

Systembeschreibung

PPSU-Kunststofffittings

Die PPSU-Fittings sind einsetzbar für

- · die Trinkwasserinstallation,
- · die Heizungsinstallation,
- · die Druckluftinstallation.

PPSU-Fittings dürfen nicht für die Gasinstallation verwendet werden.

Reiniger, Farben und Schäume o. ä. können Stoffe beinhalten, die einen PPSU-Fitting schädigen können. Daher dürfen die PPSU-Fittings nicht beklebt oder gestrichen werden. PPSU-Fittings dürfen keinen Kontakt mit PUR-Schäumen haben. In der näheren Umgebung von PPSU-Fittings sollte kein PUR-Schaum angewendet werden. Gegebenenfalls kann die Eignung von PPSU zu Bau- oder Putzprodukten in der Beständigkeitsliste PPSU geprüft werden – siehe Anhang "Beständigkeitsliste PPSU".

Messingfittings

Die Messingfittings sind einsetzbar für

- · die Heizungsinstallation,
- · die Gasinstallation,
- die Druckluftinstallation.

Aus korrosionstechnischen Gründen sind die Fittings aus Standardmessing von TECE für die Trinkwasserinstallation nicht freigegeben. Für den Trinkwassereinsatz sind die Fittings aus Rotguss oder PPSU zu wählen.

Druckhülsen

Die TECEflex Verbundrohre und TECEflex PE-Xc 5 S-Rohre werden mit unterschiedlichen Druckhülsen verpresst:

- messingfarbene Druckhülsen für TECEflex Verbundrohre
- silberfarbene Druckhülsen für TECEflex PE-Xc 5S-Rohre

Einsatzgrenzen des TECEflex Systems

Geeignet für die **Trinkwasserinstallation** nach Anwendungsklasse 2 und 10 bar gemäß ISO 10508 für Warmwasseranwendungen.

Die Trinkwasserinstallation mit TECEflex ist nach DIN EN 806, DIN EN 1717, DIN 1988 und den anerkannten Regeln der Technik zu planen, zu erstellen und zu betreiben.

Das Trinkwasser muss den aktuell gültigen Grenzwerten folgender Regelwerke entsprechen

- DIN 2000
- Deutsche Trinkwasserverordnung
- Europäische Trinkwasserrichtlinie

Die von TECE für die Trinkwasserinstallation frei gegebenen Werkstoffe sind besonders korrosionsbeständig. Dennoch kann es vorkommen, dass unabhängig vom eingesetzten Werkstoff in einzelnen Fällen auch bei zulässigen Wasserqualitäten durch unterschiedliche Einflussfaktoren in einer Trinkwasserinstallation Korrosion auftreten kann. In der DIN EN 12502-1 werden diese Einflussfaktoren beschrieben, welche das Korrosionsverhalten beeinflussen können. Bei der Planung, der Ausführung und dem Betrieb ist darauf zu achten, dass bei sachgerechter Nutzung eine Korrosion nicht gefördert wird.

Sollten Wasserbehandlungen eingesetzt werden, ist zu prüfen, ob die Maßnahme das korrosionschemische Verhalten des Wassers in so weit verändert, dass es mit den eingesetzten Installationswerkstoffen zu Korrosionsproblemen kommen kann. Wir empfehlen die Bewertung der Korrosionswahrscheinlichkeit durch eine Wasserbehandlungsmaßnahme durch einen Fachmann und den Hersteller der Wasserbehandlungsanlage prüfen zu lassen. Geeignet für die Heizungsinstallation nach Anwendungsklasse 5 und 6 bar gemäß ISO 10508 für Hochtemperaturanwendungen.

Geeignet für die **Gasinstallation** bis 100 mbar innerhalb von Gebäuden. Für Gase der 2. Gasfamilie nach DVGW-Arbeitsblatt G 260. Es gelten die Vorschriften der TRGI 2018 (= DVGW-Arbeitsblatt G 600). Flüssiggasinstallationen sind nach der DVGW TRF 2012 zu erstellen.

Zu keinem Zeitpunkt dürfen die TECEflex Bauteile einer Temperatur von mehr als 100 °C ausgesetzt sein. Offene Flammen sind verboten. Bei Lötübergängen auf Kupferrohr muss zuerst der Lötübergang erstellt werden. Mit dem Anschluss des TECEflex Systemrohres ist so lange zu warten, bis der Fitting abgekühlt ist.

In seltenen Fallen können im Betrieb vereinzelt an der Rohroberfläche der TECEflex Mehrschichtverbundrohre kleine Blasen auftreten. Diese Blasen stellen keine Minderung der Qualität oder der Gebrauchsfähigkeit dar und sind unkritisch.

TECEflex Systemrohre	Mehrschichtverbundrohre MP-M nach DIN EN ISO 21003							
Rohrbezeichnung				PE-Xc/A	L/PE-RT			
Dimension	14	16	20	25	32	40	50	63
Lieferlängen Rolle in m	120	100	100	50	-	-	-	-
Stangenware in m (5 m/Stange)	-	100	70	45	30	15	15	5
Einsatzbereich*	HKA, FBH, DLA		KA, FBH, , GAS		TW	A, HKA, DLA,	GAS	
Anwendungsklasse/ Betriebsdruck				2 / 10 5 / 10				
Farbe	weiß				weiß gelb			
Außendurchmesser in mm	15	17	21	26	32	40	50	63
Wanddicke in mm	2,60	2,75	3,45	4,00	4,00	4,00	4,50	6,00
Innendurchmesser in mm	9,8	11,5	14,1	18	24	32	41	51
Lieferbar im Wellschutzrohr		ja					-	
Lieferbar mit Dämmung $\lambda = 0.040 \text{ W/(m} \cdot \text{K)}$								
- 6 mm - 9 mm		ja ja						
- 13 mm			ja			-		
Rohrgewicht leer in kg/m	0,11	0,14	0,21	0,30	0,40	0,53	0,80	1,29
Innenvolumen in dm³/m	0,08	0,10	0,16	0,25	0,45	0,80	1,32	2,04
Rohrrauigkeit in mm	0,007							
Wärmeleitfähigkeit ungedämmt in W/(m²K)	0,35							
Wärmeausdehnungskoeffizient in mm/(mK)	0,026							
minimaler Biegeradius in mm (5 x Dimension)	70	80	100 (80)**	125	160	200	250	315

^{*} TWA - Trinkwasseranlagen; HKA - Heizkörperanbindung; FBH - Fußbodenheizung; DLA - Druckluftanlagen; GAS - Gasinstallationen Die Einordnung der Anwendungsklassen entspricht den Festlegungen in ISO 10508[4].

Technische Rohrdaten TECEflex – Teil 1

^{**} Die Rohre der Dimension 20 können auch mit dem 4-fachen der Dimension gebogen werden.

Systembeschreibung

TECEflex Systemrohre		ststoffrohre 1003 Typ MP-P	PE-MDXc 5S Heizungsrohre nach DIN 4724
Rohrbezeichnung	PE-Xc /EV	OH/PE-Xc	PE-MDXc 5S
Dimension	16	20	16
Lieferlängen Rolle in m	200	120	200/600
Stangenware in m (5 m/Stange)	-	-	-
Einsatzbereich*	TWA, FE	ВН, НКА	FBH, HKA
Anwendungsklasse/ Betriebsdruck	2 / 10 bar	; 5 / 6 bar	5 / 4 bar
Farbe	sill	per	perlmutt
Außendurchmesser in mm	16	20	16,2
Wanddicke in mm	2,2	2,8	2,0
Innendurchmesser in mm	11,6	14,4	12
Lieferbar im Wellschutzrohr	ja	ja	-
Lieferbar mit Dämmung $\lambda = 0.040 \text{ W/(m} \cdot \text{K)}$			
- 6 mm			
- 9 mm - 13 mm	-	-	
Rohrgewicht leer in kg/m	0.09	0,14	0,08
Innenvolumen in dm³/m	0,11	0,16	0,11
Rohrrauigkeit in mm	0,007		0,007
Wärmeleitfähigkeit ungedämmt in W/(m²K)	0,35		0,35
Wärmeausdehnungskoeffizient in mm/(mK)	0,2		0,2
minimaler Biegeradius in mm (5 x Dimension)	80	100	80

^{*} TWA - Trinkwasseranlagen; HKA - Heizkörperanbindung; FBH - Fußbodenheizung; DLA - Druckluftanlagen Die Einordnung der Anwendungsklassen entspricht den Festlegungen in ISO 10508[4].

Technische Rohrdaten TECEflex – Teil 2

Betriebsparameter

Werden die Betriebsparameter überschritten, werden die Rohre und Verbindungen überbeansprucht. Die Betriebsparameter dürfen daher nicht überschritten werden. Dieses ist durch geeignete Sicherheits-/Regeleinrichtungen (z. B. Druckminderer, Sicherheitsventile oder Ähnliches) zu gewährleisten.

Anwendungs- klasse	Berechnungs- temperatur T _D °C	Betriebs- dauer ^b bei T _D Jahre ^a	T _{max}	Betriebs- dauer bei T _{max} Jahre	T _{mal}	Betriebs- dauer bei T _{mal} Stunden	Typischer Anwendungsbereich		
1 a	60	49	80	1	95	100	Warmwasserversorgung (60 °C)		
2 a	70	49	80	1	95	100	Warmwasserversorgung (70 °C)		
	20	0,5							
3 c	30	20	50 4,5	50 4,5 6	65	100	Niedertemperatur-Fußbodenheizung		
	40	25							
	20	2,5							
4 b	40	20	70	2,5	100	100	Fußbodenheizung und Niedertemperatur-Radiatorenanbindung		
	60	25							Nedertemperatur-Kadiatorenanbindung
	20	14							
5 b	60	25	90	1	100	100	Hochtemperatur-Radiatorenanbindung		
	80	10							

 T_D = Temperatur, für die das Rohrsystem ausgelegt ist. T_{max} = Maximale Temperatur, die für kurze Zeit auftreten darf.

Anwendungsklassen und Klassifizierung der Betriebsbedingungen nach ISO 10508

T_{mal} = Höchst mögliche Temperatur, die im Störfall "mal" auftreten darf (maximal 100 Stunden in 50 Jahren).

^a Ein Staat kann entsprechend seiner nationalen Vorschriften entweder KLasse 1 oder Klasse 2 auswählen.

^b Ergibt sich für eine Anwendungsklasse mehr als eine Berechnungstemperatur für die Betriebsdauer und die damit verbundene Temperatur, sollten die zugehörigen Zeiten der Betriebsdauer addiert werden. "Plus kumulativ" in der Tabelle impliziert ein Temperaturkollektiv der genannten Temperatur für eine Betriebsdauer (z. B. setzt sich das Temperaturkollektiv für eine Dauer von 50 Jahren für Klasse 5 wie folgt zusammen: 20 °C über 14 Jahre, gefolgt von 60 °C über 25 Jahre, gefolgt von 80 °C über 10 Jahre, gefolgt von 90 °C über 1 Jahr, gefolgt von 100 °C über 100 h).

^c Nur erlaubt, wenn die Störfalltemperatur nicht über 65 °C ansteigen kann.

Einsatzgebiete

Trinkwasserinstallation

Trinkwasser stellt besondere Anforderungen an ein Installationssystem. Es ist ein Lebensmittel und darf durch die Materialien des Installationssystems nicht beeinträchtigt werden. Die Planung und Ausführung sowie der Betrieb der Trinkwasserinstallation hat nach DIN 1988, DIN EN 806, DIN EN 1717/A1 und VDI 6023 zu erfolgen. Der Installateur hat sich davon zu überzeugen, dass er ein Rohrsystem einbaut, das den gültigen anerkannten technischen Regeln entspricht. Das TECEflex System ist DVGW zertifiziert und nachweislich geeignet für die Trinkwasserinstallation. Zu der DVGW Zertifizierung gehören unter anderem:

- technische Prüfung der Komponenten
- KTW Prüfung
- Zertifizierung gemäß Arbeitsblatt DVGW W270

Einsatzbereich

Das TECEflex System ist für alle Trinkwasserqualitäten gemäß DIN 50930 Teil 6 geeignet, welche der aktuellen Trinkwasserverordnung (TrinkwV 2011), der DIN 2000 und der EU Richtlinie 98/83/EG des Rates vom 3. November 1998 über die Qualitat von Wasser für den menschlichen Gebrauch entsprechen. Sämtliche Werkstoffe für die Trinkwasserinstallation sind vom DVGW empfohlen und europaweit anerkannt. Alle metallischen Trinkwasser berührenden Bestandteile des TECEflex Systems entsprechen der Metall-Bewertungsgrundlage des UBA (Stand 25.5.2021) sowie der 4MS-Werkstoffliste.

Materialauswahl

Der Ausführende hat seiner Sorgfaltspflicht genüge getan, wenn er

- die Trinkwasseranalyse nach DIN 50930-6 für das Versorgungsgebiet des zu erstellenden Bauvorhabens vorliegen hat und die Eignung des TECEflex Systems geprüft hat,
- sich den Erfahrungen des Versorgers versichert hat,
- gegebenenfalls von TECE eine Freigabe für TECEflex erhalten hat.

Maßnahmen zur Legionellenprophylaxe

Trinkwasserinstallationen sind mit besonderer Sorgfalt nach DIN EN 806 und DIN 1988 zu planen, auszuführen und zu betreiben, zudem gelten die VDI 6023 und das DVGW Arbeitsblatt W551. Es kann Gebäude geben, die erhöhte hygienische Anforderungen an eine Trinkwasserinstallation stellen, in denen zeitweise der bestimmungsgemäße Betrieb nicht sichergestellt werden kann. Dieses können zum Beispiel Krankenhäuser, Schulen oder Hotels sein. In diesen Fällen sind spezielle Maßnahmen

zur Erhaltung der Trinkwasserhygiene erforderlich. Hier sollte ein Hygienekonzept vorliegen.

Durch die Einhaltung einiger einfacher Regeln lässt sich das Risiko der Legionellenbelastung minimieren:

- Es ist der bestimmungsgemäße Betrieb der Trinkwasserinstallation sicherzustellen. Der Nutzer der Anlage ist zu informieren, welcher bestimmungsgemäße Betrieb in der Planung der Installation zu Grunde liegt. Um einen regelmäßigen Wasseraustausch zu gewährleisten, empfiehlt TECE den Einsatz von TECEprofil WC-Modulen mit Uni-Spülkasten und integrierter Hygienespülfunktion.
- In keinem Abschnitt der Trinkwasser-Zirkulationsanlage darf die Temperatur kleiner 55 °C sein.
- Das Kaltwasser ist gegen Erwärmung zu schützen.
 TECE empfiehlt Kaltwasserleitungen ausreichend stark
 zu dämmen. In Vorwänden sollten Kaltwasserleitungen
 unten und warm gehende Leitungen oben montiert
 werden. Gegebenfalls ist es sinnvoll, die Hohlräume mit
 Dämmstoff zu verfüllen.
- Um eine Erwärmung des Kaltwasser Armaturenanschlusses zu vermeiden, empfiehlt sich der Einsatz der TECE-Hygienebox
- Nicht benötigte und tote Rohrabschnitte, in denen Wasser stagnieren kann, sind unmittelbar am Abgang abzutrennen.
- Während der Installation ist darauf zu achten, dass kein Schmutz in das Rohrsystem eingebracht wird
- Die Speicherwassermenge ist so klein wie möglich auszulegen.
- Die Rohrdimensionen sind nach dem differenzierten Berechnungsverfahren der DIN 1988 zu ermitteln.
- · Zirkulationsleitungen sind hydraulisch abzugleichen.
- Die Temperatur des Warmwasserbereiters muss mindestens 60 °C betragen.
- Die Anlage sollte bei Inbetriebnahme besonders gut gespült werden.
- Es dürfen keine organischen Materialen wie z. B. Hanf in der Trinkwasserinstallation verbleiben.
- Die korrekte Funktion und Wartung von Wasseraufbereitungsanlagen und Filtern ist sicherzustellen.
- Sind Entnahmestellen weit entfernt oder werden sehr selten benutzt, ist eine dezentrale Warmwasserversorgung vorzuziehen.
- Aus hygienischen Gründen sind Druckprüfungen nicht mit Wasser, sondern mit ölfreier Druckluft oder inertem Gas durchzuführen.
- Für das Spülen und für die Druckprobe ist ausschließlich hygienisch einwandfreies Trinkwasser zu verwenden.
- Bei zeitweiser Nichtnutzung bzw. Unterbrechung des Anlagenbetriebes muss die VDI 6023 beachtete werden. Dieses gilt auch für dauerhafte Änderungen der Anlage.

Desinfektion von Trinkwasserinstallationen

Die Trinkwassereignung des TECEflex Systems ist durch die DVGW Zertifizierung belegt. Die Komponenten des TECEflex Systems sind aus europaweit anerkannten und bewährten Werkstoffen gefertigt. Eine nach DIN 1988, DIN EN 806, DIN EN 1717/A1 und VDI 6023 geplante, ausgeführte und betriebene Trinkwasserinstallation ist hygienisch einwandfrei und benötigt im Prinzip keine Desinfektionsmaßnahmen. Die Desinfektion ist nur in Ausnahmefällen nötig und nur dann einzusetzen, wenn eine zwingende Notwendigkeit (Kontaminationsfall) besteht.

Sie ist als sofortige Notfallmaßnahme anzusehen, um die Trinkwasserinstallation wieder in einen gebrauchsfähigen Zustand zurückzuführen. Der Grund der mikrobiellen Kontamination (Verkeimung) – z. B. bautechnische Mängel oder eine falsche Betriebsweise – ist zu eliminieren. Eine vorbeugende dauerhafte oder regelmäßige Desinfektion einer Trinkwasseranlage ist nicht erlaubt. Dauerhaft zugegebene Desinfektionsmittel können einen deutlichen Einfluss auf die Lebensdauer der Trinkwasserinstallation haben. Aufgrund möglicher Materialbeeinträchtigungen kann für diese Fälle keine Gewährleistung übernommen werden.

Eine wiederkehrende oder dauerhafte Verkeimung des Wassers ist ursächlich häufig in der Installationsweise bzw. in der Betriebsweise zu finden (Totleitungen, Stagnationszeiten, Erwärmung des Kaltwassers bzw. Abkühlung des Heißwassers etc.). In solchen Fällen gehen Sanierungen oder ein Sicherstellen des bestimmungsgemäßen Betriebes vor Desinfektionsmaßnahmen.

Grundsätzlich zu unterscheiden sind Maßnahmen außerhalb des laufenden Betriebes (chemische Desinfektion) und Maßnahmen im laufenden Betrieb (thermische Desinfektion und kontinuierliche chemische Desinfektion).

Thermische Desinfektion

Das DVGW-Arbeitsblatt W 551 schreibt eine dreiminütige Durchspülung jeder Entnahmestelle mit mindestens 70 °C heißem Wasser vor. Es hat sich in der Praxis bewährt, den Warmwasserspeicher auf 80 °C aufzuheizen, um die Temperaturverluste zu den Entnahmestellen zu kompensieren. Vor dem Spülen der Entnahmestellen muss eine eventuell vorhandene Zirkulation so lange eingeschaltet sein, bis die Zirkulationsrückleitung eine Temperatur von mindestens 70 °C erreicht hat. Es ist darauf zu achten, dass sich während der thermischen Desinfektion keine Nutzer verbrühen können. Alle Trinkwasserinstallationsrohre aus dem TECEflex System können bedenkenlos mit dieser Methode desinfiziert werden.

Bei häufigen thermischen Desinfektionen kann eine Einschränkung der Lebensdauer von TECEflex Rohren nicht ausgeschlossen werden und es sollte über eine Sanierung der Trinkwasserinstallation nachgedacht werden.

Chemische Desinfektion

Chemische Desinfektionsmaßnahmen sind nach dem DVGW-Arbeitsblatt W 291 durchzuführen. Es ist darauf zu achten, dass die dort aufgeführten Wirksubstanzen, Konzentrationen, Anwendungsdauer und maximalen Temperaturen eingehalten werden. Eine Kombination von thermischer und chemischer Desinfektion ist verboten. Die Wassertemperatur währen einer chemischen Desinfektion darf 25 °C nicht überschreiten.

Das TECEflex System kann nach mit den im DVGW-Arbeitsblatt W 551 beschriebenen Desinfektionsmitteln desinfiziert werden. Es ist darauf zu achten, dass die Dosierungen nicht überschritten werden. Es ist sicherzustellen, dass niemand während der Desinfektion Trinkwasser entnimmt. Nach einer chemischen Desinfektion ist unbedingt darauf zu achten, dass alle Rückstände des Desinfektionsmittels aus dem Rohrnetz in ausreichendem Maße herausgespült werden. Das Wasser mit dem Desinfektionsmittel darf nicht dem Abwasser zugeführt werden.

Vor einer Desinfektionsmaßnahme mit chemischen Wirkstoffen muss sichergestellt werden, dass alle Bestandteile der Trinkwasserinstallation gegen den Wirkstoff beständig sind. Besonderes Augenmerk ist auf Bauteile aus Edelstahl zu legen. Es sind die Vorgaben des DVGW-Arbeitsblatt W 551 zu beachten. Die Eignung des Desinfektionsmittels in Verbindung mit PE-Xc Rohren und Rotguss ist vom dem Hersteller des Desinfektionsmittels freizugeben. Die Vorgaben des Herstellers sind zu beachten.

Die desinfizierende Wirkung chemischer Desinfektionsmittel resultiert in der Regel aus der oxidierende Wirkung der Inhaltsstoffe. Bei häufigen Desinfektionen werden auch die Werkstoffe der Trinkwasserinstallation angegriffen. Häufig wiederkehrende chemische Desinfektionen haben einen deutlich negativen Einfluss auf die Lebensdauer des TECEflex Systems. Daher sollte die Gesamtzahl auf fünf Desinfektionszyklen, bezogen auf die Gesamtlebensdauer der Rohre, beschränkt werden. Wiederkehrende Desinfektionsmaßnahmen entsprechen nicht dem Stand der Technik. Eine Desinfektionsmaßnahme ist nur legitim, um eine Trinkwasserinstallation nach einer Kontamination wieder in einen gebrauchsfähigen Zustand zu versetzen.

Wirkstoff	Lieferform	Lagerung	Allgemeine Sicher- heitshinweise *	Maximale Konzentration **	Wirkdauer	Maximal zulässige Temperatur
Wasserstoffper- oxid H2O2	Wässrige Lösung in verschiedenen Konzentrationen	Lichtgeschützt, kühl, Verschmutzung unbe- dingt vermeiden	Bei Lösungen >5 %, Schutzausrüstung erforderlich	150 mg/l H2O2	Max. 24 h	Tmax ≤ 25 °C
Natriumhypochlo- rit NaOCl	Wässrige Lösung mit maximal 150 g/l Chlor	Lichtgeschützt, kühl, verschlossen und in einer Auffangwanne	Alkalisch, ätzend, giftig, Schutzausrü- stung erforderlich	50 mg/l Chlor	Max. 12 h	Tmax ≤ 25 °C
Chlordioxid ClO2	Zwei Komponenten Natriumchlorit, Natri- umperoxodisulfat	Lichtgeschützt, kühl und verschlossen	Wirkt oxidierend, Chlordioxidgas nicht einatmen, Schutzaus- rüstung erforderlich	6 mg/l CIO2	Max. 12 h	Tmax ≤ 25 °C

^{*} Die entsprechenden Hinweise in den Sicherheitsdatenblättern des Herstellers sind zu beachten.

Chemische Desinfektionen, Wirkstoffe und Konzentrationen gemäß z. B. DVGW W 557

Anschluss an Warmwasserbereiter

Warmwasserbereiter, die in diesem Dokument nicht für den Einsatz mit TECEflex freigeben sind, sind durch den jeweiligen Hersteller für den Anschluss mit TECEflex freizugeben. Dabei sind die Einsatzgrenzen des TECEflex Systems auch für den Störfall zu beachten.

Gas-Durchlauferhitzer

Einige Gas-Durchlauferhitzer können im Falle eines Störfalles unzulässig hohe Drücke bzw. Temperaturen erzeugen. Sie sind nicht für den Anschluss mit Kunststoffrohren geeignet. Für den Anschluss von Gas-Durchlauferhitzern mit TECEflex ist eine Freigabe des Geräteherstellers nötig. Beachten Sie unbedingt die Angaben des Geräteherstellers.

Elektrodurchlauferhitzer

Die in der Tabelle aufgeführten elektrischen Durchlauferhitzern sind für den Anschluss mit TECEflex freigegeben:

Hersteller	Bezeichnung	Le	Steuerung/ Regelung			
AEG	DDLE xx*	18	21	24	27	elektronisch
CLAGE	DBX	18	21	24	27	elektronisch
	BCX	18	21	24	-	elektronisch
	DEX	18	21	24	27	elektronisch
	DSX	18	21	24	27	elektronisch
Junkers	ED xx*-2 S	18	21	24		hydraulisch
Siemens	Typ DE xx* 415	18	21	24	27	elektronisch
	Typ DE xx* 515	18	21	24	27	elektronisch
	Typ DE xx* 555	18	21	24	27	elektronisch
Stiebel	DEL xx* SL	18	21	24	27	elektronisch
Eltron	DHE xx* SL	18	21	24	27	elektronisch
Vaillant	e VED	18	21	24	27	elektronisch
	e VED plus	18	21	24	27	elektronisch
	e VED exclusive	18	21	24	27	elektronisch

xx* Leistung (in kW) in der Produktbezeichnung

Solare Warmwassererwärmung

TECEflex kann für den Anschluss einer Solaranlage an eine Warmwasserbereitung eingesetzt werden, wenn durch technische Maßnahmen sichergestellt ist, dass die Medientemperatur auf 70 °C begrenzt ist. Die Einsatzgrenzen des TECEflex Systems sind zwingend einzuhalten.

Heizungsinstallation

Das TECEflex System ist für die Betriebsbedingungen der Hochtemperatur-Radiatoranbindung der Klasse 5 nach ISO 10508 geeignet. Die Anwendungsklasse 5 spiegelt die Betriebsbedingungen eines gleitenden Heizbetriebes über 50 Jahre wieder. Siehe dazu auch "Betriebsparameter"

Konstanter Heizbetrieb.

Wird eine Heizungsinstallation konstant mit einer Vorlauftemperatur unabhängig von der Außentemperatur betrieben, darf die Vorlauftemperatur 70 °C nicht überschreiten. Höhere Vorlauftemperaturen haben einen Einfluss auf die Lebensdauer des Systems.

Sockelleistensysteme

Für die Verlegung von Sockelleistensysteme sind ausschließlich TECEflex Metallfittings und die PE-Xc/Al/PE-RT Aluminiumverbundrohre zugelassen. Die Vorlauftemperatur ist auf maximal 70 °C begrenzt.

^{**} Dieser Wert darf über die gesamte Anwendungsdauer an keiner Stelle der Installation überschritten werden.

Einsatzgebiete

Druckluftinstallation

Die TECEflex Form- und Verbindungsstücke sowie die TECEflex Aluminiumverbundrohre sind für die Verwendung in Druckluftsystemen geeignet. Für die Druckluftinstallation werden die gleichen Fittings und Rohre eingesetzt wie bei der Trinkwasser- und Heizungsinstallation.

TECEflex ist durch den TÜV Süd als Druckluftsystem zertifiziert und darf das TÜV-Siegel führen. Die Zertifizierung beinhaltet ebenfalls die TECEflex PPSU-Fittings.

Systemübergreifende Verbindungen mit Armaturen, Hähnen, Fittings usw. können mit den TECEflex Gewindefittings erstellt werden. Das TECEflex System ist geeignet für Druckluft mit den Parametern

- Nenndruck 16 bar.
- · Betriebsüberdruck 12 bar und
- maximale Spitzenbetriebstemperatur 60 °C.
 Das Zertifikat des TÜV Süd steht unter www.tece.de zum Download bereit.

Gasinstallation

Das TECEflex System ist für die Gasinstallation bis 100 mbar innerhalb von Gebäuden zugelassen. Die Zulassung gilt für Gase der 2. Gasfamilie nach DVGW-Arbeitsblatt G 260. Es gelten die Vorschriften der TRGI 2018 (= DVGW-Arbeitsblatt G 600). Für eine sach- und fachgerechte Installation sind außerdem die jeweilige Landesbauordnung sowie die Länderfeuerungsverordnung zu beachten. Darüber hinaus gelten die landesspezifischen Vorschriften, Normen und Arbeitsblätter, die Unfallverhütungsvorschriften und die allgemein anerkannten Regeln der Technik.

Für die Gasinstallation stehen zur Verfügung:

- Metallfittings aus Messing oder Rotguss/Siliziumbronze
- · Verbundrohre mit PE-Xc-Inliner in gelber Farbe
- messingfarbende Druckhülsen
- Gassicherheitsarmaturen (TAE und GSK)

Alle für die Gasinstallation geeigneten TECEflex Bestandteile sind mit W/G 100 gekennzeichnet.

Verarbeitungshinweise

Das TECEflex System darf nur mit den dazugehörigen Systemwerkzeugen verarbeitet werden. Eine Verbindung von TECEflex Komponenten mit fremden Rohren oder Fittings ist verboten. Ein Gewährleistungsanspruch besteht nur für die in der Systembeschreibung dargestellten Einsatzmöglichkeiten.

Lesen Sie vor der Nutzung der Werkzeuge unbedingt die Bedinungsanleitungen. Sollten die Bedinungsanleitungen nicht mehr zur Verfügung stehen, sprechen Sie Ihren TECE Anspechpartner an oder laden Sie sie unter www.tece.de herunter.

TECEflex Rohre dürfen nur mit Schneidwerkzeugen in einwandfreiem Zustand bearbeitet werden. Insbesondere die Schneide muss scharf und ohne Grat sein, da es sonst beim Aufweiten zur Beschadigung des Installationsrohres kommen kann.

Beschädigte oder eingeschränkt nutzbare Werkzeuge sind nicht mehr zu verwenden. Es besteht die Gefahr von Personen- und oder Sachschäden. Wenden Sie sich an Ihren TECE Ansprechpartner

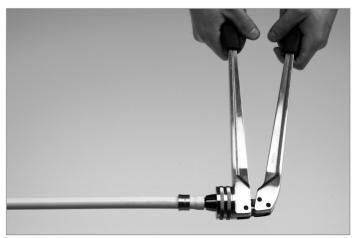
Verbindung mit TECEflex Handwerkzeugen

Mit den TECEflex Handwerkzeugen lassen sich TECEflex Verbindungen bis zur Dimension 32 verarbeiten.

TECEflex Handwerkzeuge: Aufweitzange mit Aufweitkopf, Rohrschneidezange, Handpresszange mit Gabelköpfen (von links)

Folgende Arbeitsschritte sind für eine korrekte Verbindung durchzuführen:

Schritt 1 – Rohr ablängen:


Das Installationsrohr mit den TECE-Rohrschneidezangen (Best.-Nr.: 8760002 oder 720093) rechtwinklig abschneiden. Ab der Dimension 32 ist der Kunststoffrohrschneider (Best.-Nr.: 80042) zu verwenden.

Schritt 2 – Druckhülse aufschieben:

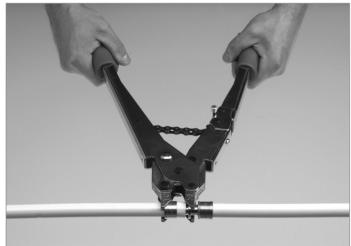
Die TECEflex Druckhülse über das Rohrende schieben. Dabei muss die glatte Seite der Druckhülse (ohne Außenring) zum Fitting zeigen.

Schritt 3 - Rohr aufweiten:

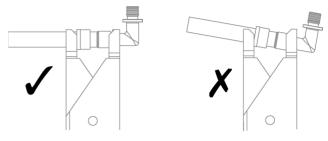
Den Aufweitkopf der Rohrdimension entsprechend wählen und auf die Aufweitzange (Best.-Nr.: 720056) schrauben.

Verarbeitungshinweise

Das Rohrende bis zum Anschlag auf den Aufweitkopf aufschieben und aufweiten.


Die TECEflex Verbundrohre dürfen nur ein Mal aufgeweitet werden!

Schritt 4 - Rohr aufschieben:


Das TECEflex Installationsrohr bis zum letzten Sägezahn auf den Fitting schieben. Ein Aufschieben bis zum Anschlag ist nicht erforderlich, die entsprechende Tiefe wird bereits durch das Aufweiten vorgegeben. Ein Anzeichnen der Einstecktiefe ist nicht nötig.

Schritt 5 – Verbindung herstellen:

Die mit der Angabe der Rohrdimension gekennzeichneten Gabelköpfe auswählen und mit den Bolzen auf der Handpresszange (Best.-Nr.: 720050) befestigen. Die Druckhülse mit der Hand soweit wie möglich zum Rohrende schieben, Fitting und Hülse in die Gabelköpfe einlegen. Die Druckhülse durch mehrmaliges Betätigen der Handpresszange bis zum Fitting aufpressen. Ein verbleibender Spalt von ca. 0,5 mm zwischen Fitting und Hülse ist herstellungsspezifisch und unbedeutend. Die Verbindung ist selbst dann einwandfrei, wenn das Rohr nicht bis an den Presskragen des Fittings geschoben wurde.

Hinweis: Achten Sie bei der Verpressung auf die korrekte Position des Presswerkzeugs. Der Fitting muss vollständig und rechtwinklig im Presswerkzeug liegen.

Verpressung: Richtige Position (links) - Falsche Position (rechts)

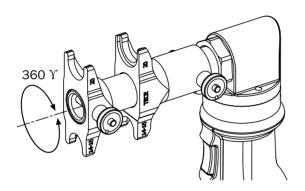
Verbindung mit RazFaz-Akkuwerkzeug

Hydraulische Akku-Presswerkzeuge für die Herstellung von TECEflex Verbindungen bis 32 mm.

TECEflex RazFaz-Akkuwerkzeuge: Aufweitwerkzeug mit Aufweitköpfen und Presswerkzeug mit Pressgabeln

Die für eine korrekte Verbindung erforderlichen Arbeitsschritte entsprechen dem Vorgehen bei der "Verbindung mit TECEflex Handwerkzeugen" (siehe vorangehender Abschnitt). Lediglich das Aufweiten (Schritt 3) und Verpressen (Schritt 5) erfolgt hier mit den RazFaz-Werkzeugen.

Schritt 3 – Rohr aufweiten:

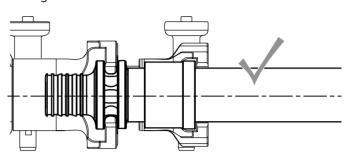


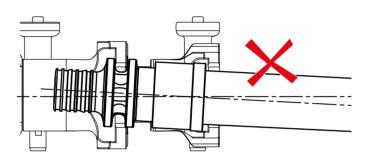
Den zur Rohrdimension passenden Aufweitkopf wählen und auf das RazFaz-Aufweitwerkzeug schrauben. Nun den Aufweitkopf bis zum Anschlag in das Rohrende schieben und den Aufweitvorgang am Presswerkzeug auslösen. Das Werkzeug muss gerade vor dem Rohrende gehalten werden.

Das Werkzeug verfügt über eine Endkontrolle, das heißt, dass der Aufweitvorgang so lange durchgeführt werden muss, bis der Aufweitkopf automatisch wieder in die Ausgangsposition zurückfährt.

Schritt 4 – Verbindung herstellen:

Die passenden Pressgabeln auf das Presswerkzeug schieben und mit den Sicherungsbolzen arretieren. Die Gabeln sind für jeweils zwei Dimensionen (14/16–20 und 25–32) ausgelegt und stufenlos um 360 ° drehbar.


Die Druckhülse so weit wie möglich zum Rohrende schieben und die Pressgabeln gerade auf dem Fitting positionieren.


Durch Betätigen des Presswerkzeugs die Druckhülse bis zum Fitting schieben.

Das Presswerkzeug verfügt über eine Endkontrolle, der Pressvorgang muss so lange durchgeführt werden, bis die Pressgabeln automatisch wieder in die Ausgangsposition zurückfahren.

Bei der Verpressung von PPSU Fittings ist besondere Sorgfalt geboten. Die Pressgabeln müssen immer korrekt anliegen. Ein schräges Ansetzten des Werkzeuges ist nicht zulässig.

Bei den RazFaz-Werkzeugen handelt es sich um qualitativ hochwertige und technisch anspruchsvolle Hydraulikaggregate. Es empfiehlt es sich, die Geräte regelmäßig zur Materialerhaltung warten zu lassen. Eine Serviceadresse erhalten Sie unter:

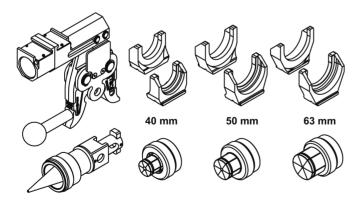
Novopress GmbH & Co. KG

Scharnhorststraße 1 D-41460 Neuss

info@novopress.de

Verbindung mit Presswerkzeug PMA

Die TECEflex Werkzeuge zur Verarbeitung der Dimensionen 40–63 benötigen als Antrieb eine handelsübliche Pressmaschine mit mindestens 32 kN Presskraft, die Presskraft darf 34 kN nicht überschreiten. Bei höheren Presskräften können Beschädigungen des Werkzeugs nicht ausgeschlossen werden.


TECE empfiehlt folgende Pressmaschinen (alphabetische Reihenfolge der Hersteller):

Hersteller (Systemanbieter)	Maschinentyp
Geberit	ACO203plus, ACO203XLplus, ECO203
Klauke	UAP332, UAP432
Novopress	ACO/ECO203, EFP203, ACO203XL
REMS	Akku-Press/Akku-Press ACC, Power-Press/Power-Press ACC
RIDGID	RP 340-B, RP 340-C
Rothenberger	Romax 3000/ 4000/ Ac ECO
Vetec	SPM 32
Viega	Pressgun 5

Für den Fall, dass eine Pressmaschine nicht in der vorstehenden Liste aufgeführt ist, ist eine Freigabe von TECE einzuholen.

Hinweis: Eine Verbindung ist dann korrekt verpresst, wenn die Druckhülse bis zum Fitting geschoben ist. Die Gewährleistung für die Pressverbindung ist somit nicht vom Zustand des Presswerkzeuges abhängig – nur die Position der Druckhülse ist ausschlaggebend.

Vor dem Gebrauch sind die Sicherheitshinweise des Pressmaschinenherstellers und die der TECEflex Werkzeuge zu lesen und bei deren Gebrauch unbedingt einzuhalten.

Presswerkzeug PMA 40 63 TECEflex

Die zu einer Verbindung erforderlichen Arbeitsschritte sind – unter Verwendung des Werkzeugsets – analog zu denen bei Nutzung der Handpresswerkzeuge.

Das Rohr wird mit einem Rohrschneider (Best.-Nr. 80042) getrennt. Der Rohrschneider ist mit einem speziellen Kunststoffrohr-Schneidrad ausgerüstet.

Die TECEflex Druckhülse wird im zweiten Schritt über das Rohrende geschoben. Dabei muss die glatte Seite der Druckhülse (ohne Außenring) zum Fitting zeigen.

Hinweis: Alle Werkzeugwechsel nur an einer stromlosen Pressmaschine durchführen!

Das Aufweitwerkzeug der entsprechenden Dimension wählen, in die Pressmaschine einführen und mit dem Sicherungsbolzen arretieren. Das Rohrende bis zum Anschlag auf den Aufweitkopf aufschieben und den Aufweitvorgang an der Pressmaschine auslösen. Das Werkzeug muss gerade und ruhig vor dem Rohrende gehalten werden.

Das Rohr bis zum letzten Sägezahn auf den Fitting schieben. Ein Aufschieben bis zum Anschlag ist nicht erforderlich, die entsprechende Tiefe wird bereits durch das Aufweiten vorgegeben. Im nächsten Schritt wird die Verbindung hergestellt: Den Pressmaschinenaufsatz PMA – mit den der Rohrdimension entsprechenden Pressgabeln – in die Aufnahme der Pressmaschine einführen und mit dem Sicherungsbolzen arretieren.

Die Druckhülse mit der Hand so weit wie möglich zum Rohrende schieben, Fitting und Druckhülse gerade zwischen die Pressgabeln legen. Der Grundkörper der Schiebebacke muss dabei parallel zum Rohr zeigen. Die Druckhülse durch Betätigen der Pressmaschine bis zum Fitting aufpressen. Ein verbleibender Spalt von ca. 0,5 mm zwischen Fitting und Hülse ist herstellungsspezifisch und unbedeutend.

Wiederverwendung verpresster Fittings

Bereits verpresste TECEflex Fittings können wieder verwendet werden. Die Fittings lassen sich einfach aus dem Rohr entfernen, indem die Verbindung mit einem Heißluftfön auf ca. 180 °C erwärmt wird.

Bitte beachten Sie dabei Folgendes:

- Die Wiederverwendung ist ausschließlich mit den metallischen Form- und Verbindungsteilen möglich (nicht bei PPSU-Fittings).
- Der Fitting, der wieder verwendet werden soll, muss vollständig vom Leitungssystem getrennt sein, damit die bestehende Installation keinen Temperaturen über 110 °C ausgesetzt wird. Bei Fittings mit mehreren Abgängen (z. B. T-Stücke oder Bögen) müssen alle Anschlüsse entfernt werden.
- Die Druckhülsen dürfen nicht wieder verwendet werden.
- Den Fitting genügend abkühlen lassen.
- Die Erwärmung darf niemals mit offener Flamme erfolgen!
- Das erwärmte Rohrende niemals mit der bloßen Hand, sondern immer mit einer Zange vom Stutzen abziehen!

Um die Sicherheit von sich und weiteren Personen sicherzustellen, sind die Sicherheitshinweise, Bedienungsanleitungen und Montagehinweise in diesem Dokument einzuhalten und zu beachten. Dazu sind sie vor Arbeitsbeginn sorgfältig durchzulesen.

Es ist sicherzustellen, dass immer die aktuelle Version dieses Dokumentes zur Verfügung steht. Gegebenenfalls ist unter www.tece.de die Aktualität des Dokumentes zu prüfen. Die Bedienungs- und Montageanleitungen sind aufzubewahren und zur Verfügung zu halten. Sollten Verständnisfragen zu diesem Dokument bestehen, sind diese mit dem TECE-Support oder dem zuständigen TECE-Vertriebsmitarbeiter zu klären.

TECEflex darf nur wie in dieser Technischen Information beschrieben geplant, installiert und betrieben werden. Jeder andere Gebrauch ist nicht bestimmungsgemäß und deshalb unzulässig.

TECEflex darf nur von geschulten und autorisierten Fachhandwerkern installiert werden. Zur Verarbeitung sind ausschließlich die TECEflex Systemwerkzeuge zugelassen. Die Verwendung systemfremder Werkzeuge oder die Installation durch Laien kann zu Sach- und Personenschäden führen.

Eine Verbindung von TECEflex Komponenten mit fremden Rohren oder Fittings ist verboten. Ein Gewährleistungsanspruch besteht nur für die in der Systembeschreibung dargestellten Einsatzmöglichkeiten.

Allgemeine Hinweise

Bei der Verwendung von TECEflex Rohren sind die nachstehend aufgeführten Hinweise zu beachten:

Alle Komponenten des TECEflex Systems sind vor der Verarbeitung auf Verschmutzungen oder Beschädigungen zu überprüfen. Alle Komponenten müssen bei der Montage und im Betrieb frei von Spannungen sein.

Es ist für eine ausreichende Bewegungsfreiheit der Rohre, ausgelöst zum Beispiel durch thermische Längenausdehnung, zu sorgen. Dieses kann beispielsweise durch Biegeschenkel erfolgen.

Es ist darauf zu achten, dass die Fittings durch die Verarbeitung nicht verformt werden. Ursache dafür kann unter anderem die Verwendung von Rohrzangen oder ein zu starkes Spannen in einem Schraubstock sein. TECE empfiehlt die Verwendung von Schraubenschlüsseln.

Gewindeverbindungen

Nur Gewinde nach ISO 7-1, DIN EN 10226-1 bzw. ISO 228 einsetzen (Rp = zylindrisches Innengewinde, R = konisches Aussengewinde). Bei der Kombinaton von ISO 7-1 bzw. DIN EN 10226-1 mit Gewinden nach ISO 228 ist die Toleranzlage durch vorheriges Zusammendrehen auf Leichtgängigkeit zu prüfen.

Für die Trinkwasserinstallation nur zugelassene Dichtmittel verwenden (z. B. DVGW-zertifizierte Dichtmittel). Bei der Verwendung von Hanf ist darauf zu achten, dass nicht zu viel verwendet wird. Es kann sonst zu Beschädigung des Innen- bzw Außengewindeteiles kommen. Nach dem Einhanfen müssen die Gewindespitzen noch erkennbar sein. Es ist darauf zu achten, dass keine Hanfreste im Rohrsystem verbleiben. Werden andere Gewindedichtmittel verwendet, muss die Gewährleitung vom Hersteller des Dichtmittels übernommen werden. Übermäßiges Anziehen der Gewindeverbindung kann zu Schädigungen der Bauteile führen.

Flachdichtende Verschraubungen

Für die TECEflex flachdichtenden Verschraubungen nur Gegenstücke mit dem passenden G-Gewinde verarbeiten. Es ist eine für die Anwendung passende Dichtung zu verwenden. Bei einem Lösen der Verschraubung müssen bei einem erneutem Verbinden die Dichtflächen geprüft und die Dichtung gegebenenfalls ersetzt werden.

Verarbeitungstemperaturen

Das TECEflex System kann in einem Temperaturbereich von - 10 °C bis zu maximal + 50 °C verarbeitet werden. Bei niedrigen Temperaturen sind die Fittings und Rohrenden "handwarm" aufzuwärmen. Dazu darf keine offene Flamme verwendet werden!

Lecksuchmittel

Zur Detektion von Undichtigkeiten werden bei trockenen Druckprüfungen häufig schäumenden Lecksuchmittel verwendet. Diese Produke können Innhaltsstoffe enthalten, die die Werkstoffe des TECEflex Systems schädigen können. Daher sind nur von TECE freigegebene Lecksuchmittel zu verwenden.

Die RazFaz Werkzeuge können unter kalten Bedingungen verwendet werden, sie sollten aber bei Minusgraden in einer frostfreien Umgebung gelagert werden.

Verwendbare Lecksuchmittel:

- Weicon 11654400 Lecksuch-Spray frostsicher
- OKS 2811 Lecksucher, frostsicher, Spray
- · Helling Proof Check Plus

Nach der Prüfung sind die Fitings von den Resten des Lecksuchmittels zu säubern.

Ummantelung von Fittings

Fittings und Druckhülsen sind generell vor dem Kontakt mit Mauerwerk, Zement, Gips, Estrich, aggressiven Medien und sonstigen korrosionsauslösenden Materialien und Stoffen zu schützen. Die Bauteile sind vollständig wasserund dampfdicht abzukleben. Verwenden Sie dazu ausschließlich die TECE-Wickelbandage (Best.-Nr. 720579).

Der Kontakt zwischen Montageschäumen und Komponenten des TECEflex Systems ist zu vermeiden. Sollten Bauschäume in der Nähe der Installation eingesetzt werden sind die PPSU Fittings mit der TECE-Wickelbandage luft- und dampfdicht zu umwickeln.

Die Komponenten des TECEflex Systems sind vor Schmutz, Bohrstaub, Mörtel, Ölen, Fetten und Kleber zu schützen. Der Kontakt mit wasser- und nicht wasserlöslichen Farben sowie Lösungsmitteln jeglicher Art ist verboten.

Knickstellen und Deformierungen

Sollte in einem TECEflex Rohr ein Knick oder eine Deformierung durch unsachgemäße Verarbeitung oder ungünstige Baustellensituationen entstehen, so muss diese Stelle repariert werden, ggfs. ist bei engen Radien eine Winkelkupplung zu verwenden.

Schutz vor UV-Strahlungen

UV-Strahlung über einen längeren Zeitraum hinweg schädigt die TECEflex Rohre. Die Verpackungen der Rohre bieten einen ausreichenden Schutz vor UV-Strahlung, sind aber nicht witterungsbeständig. Die Rohre sollten daher nicht im Freien gelagert werden. Auf der Baustelle sollten die Rohre nicht unnötig lange dem Sonnenlicht ausgesetzt sein. Sie sind gegebenenfalls gegen UV-Licht zu schützen. Im Freien verlegte TECEflex Rohre sind in einem schwarzen Wellrohr gegen Sonneneinstrahlung zu schützen.

Verlegungen von TECEflex Leitungen im Erdreich

Leitungen aus TECEflex dürfen unter folgenden Bedingungen im Erdreich verlegt werden:

- Die Rohrleitungen müssen im Sandbett verlegt werden.
- Die Rohrleitungen müssen mit feinkörnigem Sand soweit überdeckt werden, dass für das Rohr keine Verletzungsgefahr durch die Einbringung des späteren Verfüllmaterials besteht.
- Auf im Erdreich verlegte Rohrleitungen dürfen keine Verkehrslasten einwirken.
- Die Fittings müssen mit der TECE-Wickelbandage (Best.-Nr. 720579) vor dem direkten Kontakt zum Erdreich geschützt werden.
- Wanddurchführungen ins Erdreich müssen für Kunststoffrohr geeignet sein und das Rohr gegen Herausziehen sichern. Sie sind nach den geltenden technischen Regeln und Vorschriften auszuführen.

Verlegung auf Bitumenbahnen

Vor dem Verlegen von TECEflex Rohren auf lösungsmittelhaltigen Bitumenbahnen oder -anstrichen müssen diese vollständig abgetrocknet sein. Es sind die Abbindezeiten des Herstellers zu beachten. Die Fittings sind nur der TECE-Wickelbandage (Best.-Nr. 720579) wasser- und dampfdicht zu umwickeln.

Anordnung von Rohrleitungen

Wenn Kalt- und Warmwasserleitungen übereinander verlegt werden, müssen die Warmwasser führenden Rohre über der Kaltwasserleitung verlegt werden.

Potenzialausgleich

Die TECEflex Verbundrohre dürfen nicht als Erdungsleiter für elektrische Anlagen gem. VDE 0100 verwendet werden.

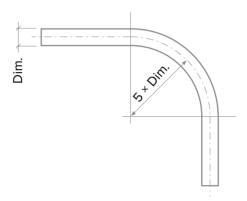
Daher muss beim teilweisen Austausch von metallenen Rohrinstallationen gegen ein Rohr aus dem TECEflex Sortiment (z. B. im Sanierungsfall) die richtige Erdung überprüft werden.

Verlegung in frostgefährdeten Bereichen

Ein Einfrieren der Leitungen ist unbedingt zu vermeiden. In frostgefährdeten Bereichen reicht eine Dämmung alleine als Frostschutz nicht aus. Die Leitungen sind zum Beispiel mit einer Begleitheizung auszustatten. Leitungen, die kein Trinkwasser enthalten, können mit geeigneten Frostschutzmitteln geschützt werden.

Inhibitoren, Frostschutzmittel oder sonstigen Zusätze können die TECEflex Rohrleitungen beschädigen. Eine Freigabe durch den jeweiligen Hersteller des Zusatzes ist erforderlich.

Allgemein gelten für Frostschutzmittel folgende Konzentrationen:


- Ethylglykol (Antifrogen N): Darf bis zu einer Konzentration von maximal 50% eingesetzt werden. TECE empfiehlt, die Konzentration auf 35% zu beschränken. Eine Konzentration von 50% Antifrogen N entspricht einer Frostsicherheit bis zu einer Temperatur von -38 °C. Eine Konzentration von 35% Antifrogen N entspricht einem Frostschutz bis -22 °C. Wird Antifrogen N über 50% dosiert, kehrt sich der Effekt des Frostschutzes um. Bei Temperaturen unter -25 °C bildet sich Eisbrei.
- Propylenglykol: Darf bis zu einer Konzentration von maximal 25% verwendet werden. Propylenglykol wird hauptsächlich in der Lebensmittelindustrie eingesetzt. Eine Konzentration von 25% entspricht einer Frostsicherheit bis -10°C.

Begleitheizungen

Begleitheizungen sowie selbst regulierende Heizbänder, die von den Herstellern für Kunststoffrohrsysteme im Sanitärbereich zugelassen sind, können für TECEflex verwendet werden. Zur Sicherung einer optimalen Wärmeübertragung werden die Heizbänder auf dem TECEflex Installationsrohr mit breitem Aluklebeband vollflächig befestigt. Die Herstellerangaben sind zu beachten.

Biegeradien

Die TECEflex Verbundrohre können mit einem minimalen Biegeradius – der fünffachen Rohrdimension entsprechend – gebogen werden.

Minimaler Biegeradius der TECEflex Verbundrohre

TECEflex Rohr Dimension	minimaler Biegeradius in mm
14	70
16	80
20	100 (80)*
25	125
32	160
40	200
50	250
63	315

Biegeradien der TECEflex Verbundrohre

Im Bereich der Biegung darf keine Verpressung durchgeführt werden. Des Weiteren muss eine Biegung, die direkt am Fitting liegen soll, vor der Verpressung durchgeführt werden.

Bis zur Dimension 20 können die TECEflex Verbundrohre von Hand gebogen werden. Die Rohre der Dimensionen größer 20 mm sind mit den TECE-Biegewerkzeugen zu biegen:

Dim. 16 - 32 mm: Best. Nr.: 720222
Dim. 40 - 63 mm: Best. Nr.: 720223

Thermische Längenänderungen

Stoffe dehnen sich bei Erwärmung aus und ziehen sich während des Abkühlens wieder zusammen. In der Warmwasser- und Heizungsinstallation müssen durch die systembedingten großen Temperaturunterscheide die Leitungen so befestigt werden, dass die Längenausdehnung in Bögen oder speziellen Ausgleichsbögen aufgefangen wird.

Ermittlung der thermischen Längenänderung

Die thermische Längenänderung wird mit folgender Gleichung ermittelt:

$$\Delta I = \alpha \cdot I \cdot \Delta t$$

- Δl thermische Längenänderung des Rohres in mm
- α Ausdehnungskoeffizient der TECEflex Rohre
- I Ausgangslänge des Rohres in m; das ist die Differenz zwischen Verlegetemperatur und der maximal möglichen Betriebstemperatur. Hier ist unter anderem die thermische Desinfektion zu beachten.
- Δt Temperaturdifferenz in K*; das ist die Differenz zwischen Verlegetemperatur und der maximal möglichen Betriebstemperatur. Hier ist unter anderem die thermische Desinfektion zu beachten.
- K = Kelvin ist die SI-Basiseinheit der Temperatur und bezieht sich auf den absoluten Nullpunkt.

$$(0 \, ^{\circ}\text{C} = 273,16 \, \text{K})$$

Ausdehnungskoeffizient der TECEflex Rohre:

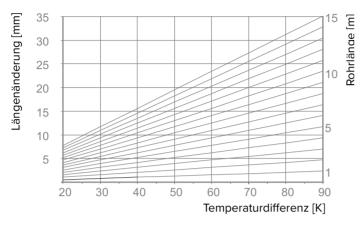
Verbundrohre α = 0,026 mm/(mK) PE-Xc Rohre α = 0,2 mm/(mK)

Beispiel: Eine 12 Meter lange TECEflex Gasleitung aus Verbundrohr wird im Winter bei 5 °C montiert. Unter Betriebsbedingungen können 35 °C entstehen.

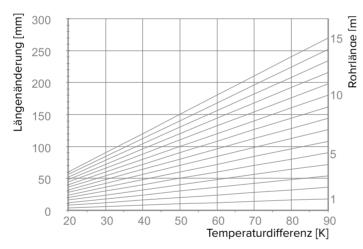
I 12 m

 Δt 35 K - 5 K = 30 K

 α 0,026 mm/(mK)

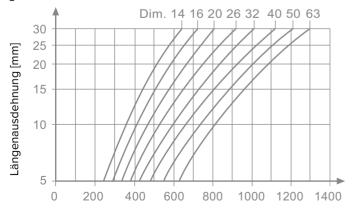

 $\Delta I = 0.026 \text{ mm/(mK)} \cdot 12 \text{ m} \cdot 30 \text{ K} = 9.36 \text{ mm}$

Ergebnis: Das Rohr wird sich um ca. 10 mm ausdehnen.


^{*} Die Rohre der Dimension 20 können auch mit dem 4-fachen der Dimension gebogen werden.

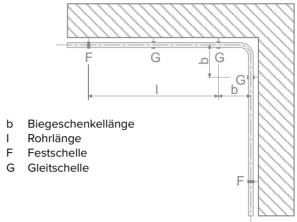
Die Ausdehnung muss durch bauliche Gegebenheiten abgefangen werden.

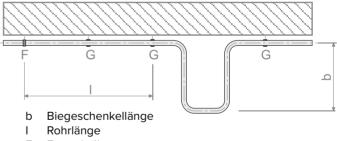
Alternativ kann die thermische Längenausdehnung aus den folgenden Diagrammen entnommen werden.


Thermische Längenausdehnung für TECEflex Verbundrohre

Thermische Längenausdehnung für TECEflex PE-Xc oder PE-MD-Xc-Rohre

Bestimmung der Biegeschenkellänge


Die Biegeschenkellänge (b) kann aus folgendem Diagramm entnommen werden:


Biegeschenkellänge b [mm]

Biegeschenkellänge für TECEflex Rohre

Durch Fest- und Gleitschellen kann die zu betrachtende Rohrlänge eingegrenzt werden. Die Längenausdehnung in Druckluft- und Gasinstallationen kann in der Regel durch Rohrführung mit Richtungsänderungen aufgefangen werden.

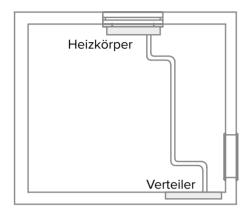
Abfangen der thermischen Längenausdehnung in einer Richtungsänderung Es kann vorkommen, dass die geplante Rohrführung nicht genügend Bewegungsraum für die Aufnahme der thermischen Längenausdehnung bietet. In diesem Fall sind Ausgleichsbögen einzuplanen, die die Biegeschenkellängen berücksichtigen.

F Festschelle

G Gleitschelle

Abfangen der thermischen Längenausdehnung in einer Dehnungsschlaufe

Beispiel:


Die im vorherigen Beispiel ermittelte Längenausdehnung des Rohres beträgt ca. 10 mm. Aus dem vorstehenden Diagramm kann die Biegeschenkellänge b entnommen werden. Für ein TECEflex Rohr der Dimension 20 ergibt sich ein Wert von 470 mm. Ist eine Gleitschelle mindestens 470 mm vor einem Bogen montiert, wird kein zusätzlicher Ausgleichsbogen benötigt.

Besondere Installationshinweise zur Längenausdehnung

- Für Sockelleistensysteme ist ausschließlich das TECEflex Verbundrohr zugelassen.
- Festpunkte können an T-Stücken, Winkeln oder Kupplungen angesetzt werden. Dazu wird direkt vor jede Druckhülse am Fittling eine Rohrschelle gesetzt.
- Sorgen Sie beim Anschluss von Heizkörpern aus dem Boden oder der Wand für genügend "Spielraum" zur

Aufnahme der Längenausdehnung.

- Der Anschluss sollte immer bogenförmig zu den Heizkörpern geführt werden.
- PPSU Fittings sind spannungsfrei zu verlegen. Gegebenenfalls sind geeignete Befestigungen anzuordnen um die PPSU Fittings von dem Einfluss der Längenausdehnung zu entkoppeln. Werden PPSU Fittings mit Vollkunststoffrohren verwendet, ist an jedem Abgang eine Rohrschelle direkt vor der Schiebehülse zu installieren.

Verlegebeispiel unter Berücksichtigung der Längenausdehnung

Leitungsbefestigung

TECEflex Rohrleitungen sind ausschließlich mit für den jeweiligen Anwendungszweck zugelassenen Rohrschellen zu befestigen. Die Angaben der Befestigungshersteller sind zu beachten. Die Ausführung der Rohrbefestigungen ist ggf. den baulichen Gegebenheiten anzupassen. Die Vorgaben der Befestigungshersteller sind zu beachten. Die TECEflex Rohrleitungen dürfen nicht an anderen Leitungen befestigt werden.

Mit Festpunkten können temperaturbedingte Längenausdehnungen der Rohre in eine vorgesehene Richtung gelenkt werden. Längere Rohrsträngen können in einzelne Abschnitte unterteilt werden. Festpunkte können an T-Stücken, Winkeln oder Kupplungen ausgeführt werden. Dazu wird direkt vor dem Fitting eine Rohrschelle gesetzt. Es dürfen keine Rohrschellen direkt auf den Fitting gesetzt werden.

Rohrschellen

Zur Befestigung der TECEflex Rohre sind Rohrschellen mit folgenden Eingenschaften zu verwenden:

- geeignet für Kunststoffrohre,
- · angepasst an die Größe der TECEflex Rohre,
- gratfei, um eine Beschädigung der Rohre zu verhindern.

Befestigen von Gasleitungen

Für TECEflex Gasleitungen ist die Verwendung von Rohrhalterungen aus brennbaren Stoffen zugelassen. Zur Schellenbefestigung können handelsübliche Dübel ver-

wendet werden, sofern sie an Bauteilen mit ausreichender mechanischer Festigkeit eingesetzt werden. Die TECEflex Gasleitungen dürfen nicht an anderen Leitungen befestigt werden. Ebenso dürfen keine anderen Leitungen an Gasleitungen befestigt werden.

Leitungsführung von TECEflex Leitungen

Die Leitungsführung von TECEflex Installationsleitungen hat den anerkannten Regeln der Technik zu entsprechen.

Trinkwasserleitungen

Die Qualität des Trinkwassers darf durch die Leitungsführung nicht beeinträchtigt werden. Um eine Vermehrung von Mikroorganismen zu vermeiden, ist die Leitungsführung und Dämmung so zu wählen, dass sich das Trinkwasser nicht erwärmt. Insbesondere in Schächten und Vorwänden ist zu prüfen, ob zur Aufrechterhaltung der Hygiene die kaltgehenden Trinkwasserleitungen einen erhöhten Dämmaufwand benötigen. In Hohlräumen wie Vorwänden empfiehlt TECE, kalt gehende Leitungen nach unten und warm gehende Leitungen nach oben zu verlegen.

Leitungen auf Putz

Art und Abstände der Befestigung sind abhängig von den baulichen Gegebenheiten vor Ort. Die Fixierung der Rohrleitungen ist nach statischen Gesichtspunkten unter Berücksichtigung der gefüllten und gedämmten Rohre nach den anerkannten Regeln der Technik auszuführen.

Rohrdimension	Befestigungsabstand in m
14	1
16	1
20	1,15
25	1,3
32	1,5
40	1,8
50	2
63	2

Befestigungsabstände für auf Putz verlegte TECEflex Leitungen.

Rohrdimension	Rohrgewicht gefüllt in kg/m
14	0,19
16	0,24
20	0,37
25	0,55
32	0,85
40	1,33
50	2,12
63	3,33

Rohrmassen TECEflex

Die Rohre sind so zu führen, dass Feuchtigkeit sowie Tropf- oder Schwitzwasser anderer Einbauten nicht auf sie einwirken können.

TECEflex Leitungen unter Putz

Je nach Wandaufbau oder Mauerbeschaffenheit kann die thermische Längenausdehnung eines unter Putz verlegten TECEflex Verbundrohres Schäden an der Wand hervorrufen. TECE empfiehlt daher, alle unter Putz verlegten TECEflex Verbundrohre mit einer Rohrdämmung zu versehen. Hierzu bieten sich die vorgedämmten TECEflex Rohre an.

Wenn keine Wärmedämmung gefordert ist, können die Verbundrohre alternativ in Wellschutzrohren verlegt werden. Diese Rohre sind ebenfalls Bestandteil des TECE-flex Programms.

TECEflex Fittings sind grundsätzlich vor dem Kontakt mit Mauerwerk, Gips, Zement, Estrich, Schnellbindern oder Ähnlichem durch das Umwickeln mit der TECE-Wickelbandage (Best.-Nr. 720579) zu schützen. Die Ummantelung muss sicherstellen, dass keine Baufeuchtigkeit an den Fitting gelangen kann. Der direkte Kontakt mit dem Baukörper ist auch auf Grund der Schallschutzanforderungen gem. DIN 4109 und VDI 4100 unbedingt zu vermeiden.

TECEflex Leitungen in Beton oder Estrich

Die Rohre werden vom Beton oder Estrich fest umschlossen, sodass die Längenausdehnung des Rohrmaterials nach innen erfolgt. Besondere Maßnahmen zur Aufnahme der thermischen Längenausdehnung sind in diesem Fall nicht nötig. Werden die Rohre allerdings in der Isolierschicht zwischen Beton und Estrich verlegt, sollten sie so angeordnet werden, dass die zu erwartende Längenausdehnung durch die Dämmung oder durch eine im Bogen gelegte Rohrführung aufgefangen wird.

Die Anforderungen an Wärmeschutz und Trittschall müssen unbedingt beachtet werden. Die entsprechenden Normen und Richtlinien sind einzuhalten. Daher ist es ratsam, die TECEflex Rohre in einer geeigneten Ausgleichsschicht zu verlegen. Die zusätzliche Aufbauhöhe ist während der Planung mit zu berücksichtigen. Die Fittings sind gegen Korrosion durch das Umwickeln mit der TECE-Wickelbandage (Best.-Nr. 720579) zu schützen.

Für TECEflex Rohre, die auf dem Rohfußboden oder in der Betondecke verlegt werden, gilt ein Befestigungsabstand von maximal einem Meter. Es ist sicherzustellen, dass die auf dem Rohfußboden verlegten TECEflex Rohre nach dem Verlegen nicht durch Leitern, Gerüste, Schiebkarren, ständiges Betreten oder Ähnliches beschädigt werden. Die Rohrleitungen sind unmittelbar vor der Einbringung des Estrichs zu überprüfen.

Durch Bewegungsfugen geführte TECEflex Leitungen

Werden Rohrleitungen durch Bewegungsfugen von Gebäuden geführt, sind diese im Wellschutzrohr zu verlegen. Das Wellschutzrohr muss mindestens 25 cm an jeder Seite der Bewegungsfuge überstehen. Eine Wärmedämmung von mindestens 6 mm Wandstärke kann alternativ zum Wellrohr verwendet werden.

Trassenführung im Fußbodenaufbau

Das Estrichlegerhandwerk hat für die Planung und Ausführung von Rohrleitungen im Fußbodenaufbau in der Richtlinie "Rohre, Kabel und Kabelkanäle auf Rohdecken" beschrieben, wie eine Trassenführung auszuführen ist: "Rohrleitungen im Fußbodenaufbau sind kreuzungsfrei, möglichst geradlinig sowie achs- und wandparallel zu verlegen. Schon während der Planung sollten Heizungs- und Trinkwasserleitungen Priorität vor elektrischen Leitungen und Leerrohren eingeräumt werden."

- Die Rohrleitungen in einer Trasse sind so eng wie möglich nebeneinander anzuordnen.
- Trassenbreite von parallelgeführten Leitungen einschließlich Rohrdämmung darf maximal 30 cm betragen.
- Zwischen den einzelnen Trassen ist ein Mindestabstand von 20 cm einzuhalten. Der Mindestabstand einer Trasse zu einer Wand beträgt 20 cm.
- Vor Verteilerschränken sollten die oben genannten Maße soweit wie möglich eingehalten werden.
- Im Türbereich soll der Abstand zur Türlaibung mindestens 10 cm betragen.

Unterschiedlich dicke Rohre oder sonstige Einbauten innerhalb einer Trasse müssen so ausgeglichen werden, dass eine ebene Auflage für die Trittschalldämmung entsteht.

Schallschutz

Das Geräuschverhalten einer Trinkwasser- und Heizungsinstallationen in Verbindung mit dem Bauwerk ist bei der Planung und Ausführung zu berücksichtigen.

Für die Anforderungen des Schallschutzes gelten die Normen der Reihe DIN 4109. Dort sind die Werte für die zulässigen Schalldruckpegel in fremden schutzbedürftigen Räumen sowie die Anforderungen an Armaturen und Geräte der Wasserinstallation festgelegt. Angaben über Planung, Ausführung und Betrieb der Anlagen sowie über den Nachweis des Schallschutzes gelten ebenfalls die Normen der Reihe DIN 4109 (siehe auch ZVSHK-Merkblatt und Fachinformation "Schallschutz"). Der Nachweis der Güte der Ausführung ist im Bedarfsfall durch Schallmessungen auf der Grundlage von DIN EN ISO 10052 und DIN EN ISO 16032 zu erbringen.

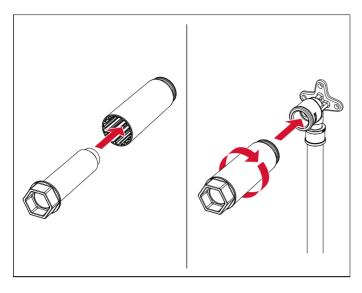
Schallschutzgerechte Installation des TECEflex Systems

Bei einer wasserführenden Rohrleitung gilt das Hauptaugenmerk dem Körperschall. Die Installation muss daher vom Bauwerk entkoppelt montiert werden:

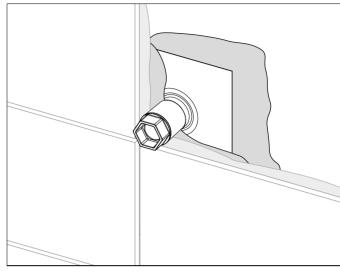
- Verwendung von Körperschall dämmenden Rohrbefestigungen.
- Rohre, die durch Estrich oder in Mauern geführt werden, sind mit einer Dämmung von mindestens 9 mm zu versehen. Das TECEflex Sortiment bietet entsprechend vorgedämmte Rohre an. Wellschutzrohre als Umhüllung bieten keinen ausreichenden Schallschutz.
- Trockenbau-Vorwandinstallationen, wie zum Beispiel TECEprofil, bieten gegenüber direkt an die Wand montierten Sanitärgegenständen einen besseren Schallschutz, da sie vom Bauwerk entkoppelt sind.
- Armaturen der Gruppe 1 mit einem nach DIN 52218 definierten Geräuschpegel von L_{ap} ≤ 20 db(A) – sind Armaturen aus der Gruppe 2 vorzuziehen.
- Trinkwasser- und Heizungsinstallationen nur auf entsprechend schweren Wänden mit einem Gewicht von mindestens 220 kg/m² installieren.
- Ein Ruhedruck von 5 bar sollte nicht überschritten werden.
- Der zulässige Durchfluss von Armaturen sollte eingehalten werden.
- Wasserführende Rohre wenn möglich nicht an Wänden zu schutzbedürftigen Räumen installieren.

Abdichtung von Armaturenanschlüssen nach DIN 18534 bei gleichzeitiger Schallentkopplung der Anschlüsse vom Bauwerk

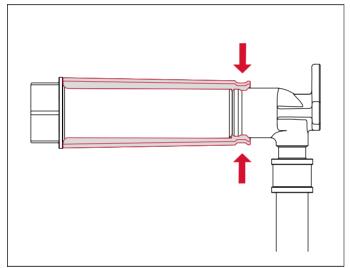
Mit der im Sommer 2017 erschienenen DIN 18534 zur Abdichtung von Innenräumen werden auch die Anforderungen an Wanddurchführungen über der Wanne und in der Dusche genau definiert. TECE empfiehlt für die Montage von Armaturenanschlüssen den Einsatz der Seal System Dichthülse in Kombination mit der TECE-Schalldämbox. Die Schalldämbox ist mit einer speziellen Aufnahme für die Dichthülse ausgestattet und gewährleistet eine sichere Entkopplung des Bauwerkes mit der Wanddurchführung. Das TECEflex Sortiment bietet vormontierte Montageeinheiten mit unterschiedlichen Wandscheiben und passenden Schalldämmboxen. Eine mechanisch sichere Montage bei gleichzeitiger Erfüllung der Vorgaben der DIN 18534 ist damit gewährleistet.

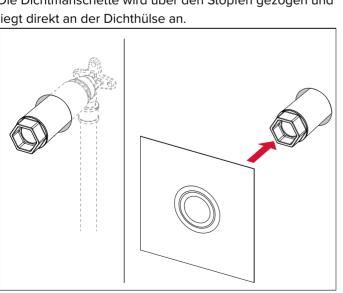

Der Baustopfen ist für die Druckprobe vor der Inbetriebnahme der Trinkwasserinstallation gedacht. Für einen Verbleib im Betrieb, auch nur kurzzeitig, ist er nicht geeignet.

Vor dem Einschrauben des Baustopfens in die Wandscheibe ist der O-Ring durch den Anwender einer visuellen Prüfung auf Sauberkeit und Unversehrtheit zu unterziehen. Der O-Ring kann danach in Eingenverantwortung des Anwenders wiederverwendet werden. Im Zweifel sollte ein neuer O-Ring verwendet werden:

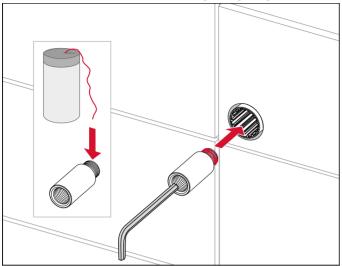

O-Ring 1/2" - Bestellnummer 704808 O-Ring 3/4" - Bestellnummer 704814

Der Baustopfen ist werkzeuglos handfest einzuschrauben. Das Drehmoment darf dabei 10 Nm nicht überschreiten.


Die Montage erfolgt in folgenden Arbeitsschritten: Die Dichthülse wird beim Einschrauben des Baustopfens auf die Wandscheibe geschoben und dichtet nach außen ab.


Die Dichthülse fügt sich in die Aufnahme der Schalldämmbox sicher ein.

Vor der Montage der Armatur wird die Dichthülse wandbündig gekürzt und der wiederverwendbare Baustopfen herausgeschraubt.



Die Dichtmanschette wird über den Stopfen gezogen und liegt direkt an der Dichthülse an.

Als nächstes wird die Dichtmanschette in die Abdichtungsebene eingebettet und die Wand fertiggestellt.

Anschließend wird die Hahnverlängerung eingedreht.

Brandschutz

Muster-Leitungsanlagen-Richtlinie (MLAR)

Die Muster-Leitungsanlagen-Richtlinie beschreibt im Wesentlichen die Anforderungen, die an Leitungsanlagen in Flucht- und Rettungswegen, bei der Durchführung durch Wände und Decken gestellt werden, sowie den Funktionserhalt von elektrischen Leitungen.

Führung von Leitungen durch raumabschließende Bauteile (Wände und Decken) gemäß Abschnitt 4 - MLAR

Die Musterbauordnung (MBO) dürfen Leitungen durch raumabschließende Bauteile, für die eine Feuerwiderstandsfähigkeit vorgeschrieben ist, nur hindurch geführt werden, wenn eine Brandausbreitung ausreichend lang nicht zu befürchten ist oder Vorkehrungen hiergegen getroffen sind.

Diese Voraussetzungen sind erfüllt, wenn die Leitungsdurchführungen den Anforderungen der MLAR entsprechen

Die Leitungen müssen entweder

- a) durch Abschottungen geführt werden, die mindestens die gleiche Feuerwiderstandsfähigkeit aufweisen wie die raumabschließenden Bauteile oder
- b) innerhalb von Installationsschächten oder -kanälen geführt werden, die – einschließlich der Abschlüsse von Öffnungen – mindestens die gleiche Feuerwiderstandsfähigkeit aufweisen wie die durchdrungenen raumabschließenden Bauteile und aus nichtbrennbaren Baustoffen bestehen.

TECE empfiehlt Brandschutzlösungen namhafter Hersteller mit zertifizierten Verwendbarkeitsnachweisen. Folgende Abschottungsmöglichkeiten sind u.a. in Verbindung mit TECE-Mehrschichtverbundrohre einsetzbar.

- Rockwoll Conlit 150 U (abP-Nr. P-3726/4140-MPA BS)
- Armaflex Protect R 90 (abP-Nr. P-MPA-E_07-009)
- Isover Protect BSR 90 (abP-Nr. P-MPA-E-06-008)
- Doyma Curaflam-Manschette XS (abZ-Nr. P-Z-19.17-1386)

Verlegetechnik von TECEflex Gasleitungen

Die TECEflex Gasinstallationen sind nach DVGW-Arbeitsblatt G 600 (TRGI 2018) für Erdgas bzw. DVFG-TRF 2012 für Flüssiggas auszuführen.

Für den Einsatz von TECEflex Gasinnenleitungen gilt die Forderung nach Explosionssicherheit der Gasinstallation. Die TECEflex Aluminiumverbundrohre stellen von sich aus keine HTB Qualität dar. Zur Erfüllung der geforderten Explosionssicherheit sind Sicherheitseinrichtungen in Verbindung mit spezifischen Bruchverhaltensanforderungen an das TECEflex System sowie eine darauf abgestimmte spezielle Leitungsführung zu den einzelnen Gasgeräten erforderlich. Diese Einrichtungen erfüllen auch den Schutz gegenüber Eingriffen Unbefugter.

Absichern der TECEflex Gasinstallation

Die TECEflex Gasinstallationen werden durch Vorschalten eines der Belastung angepassten Gasströmungswächters (GS) abgesichert.

Der Anschluss von mehreren Gasgeräten kann in T-Stückinstallation oder durch den Einsatz eines Gassicherheitsverteilers erfolgen.

Auswahl des Gasströmungswächters

Die Auswahl des Gasströmungswächters richtet sich je nach Einbaufall belastungsbezogen nach dem in dem Kapitel: "Planung der Gasinstallation" beschriebenen Verfahren. Es dürfen ausschließlich Gasströmungswächter vom Typ K verwendet werden. Der Gasströmungswächter ist durch eine direkt mit ihm verbundene thermische Absperreinrichtung (TAE) zusätzlich abzusichern. Die Einbauanleitungen der Hersteller der Gasströmungswächter und der thermischen Absperreinrichtung sind unbedingt einzuhalten.

TECEflex Gassicherheitsarmatur

Die TECEflex Gassicherheitsarmatur vereinigt einen Gasströmungswächter Typ K mit einer thermischen Absperreinrichtung in einem Bauteil. Das TECEflex Rohr lässt sich direkt an die Gassicherheitsarmatur pressen, sodass Gewindeverbindungen vermieden werden. Die TECEflex Gassicherheitsarmatur kann waagerecht oder nach oben führend eingebaut werden. Ein Einbau nach unten ist nicht zulässig.

Leitungsführung von TECEflex Gasleitungen

Die Leitungen sind freiliegend, unter Putz ohne Hohlraum oder in Schächten bzw. in Kanälen zu verlegen. Die Leitungen sind so zu befestigen, dass der statische Halt für den Betriebsfall gegeben ist.

Soweit nicht Brandabschnitte und/oder Brandbekämpfungsabschnitte überschritten werden, können TECEflex Gasleitungen ohne weitere Verbindungen bis auf den Geräteanschluss oder die Gassteckdose in Schächten oder Kanälen und in Hohlräumen, wie zum Beispiel abgehängten Decken, Ständerwänden oder in Vorwandinstallationen ohne zusätzliche Schutzmaßnahmen verlegt werden.

TECEflex Gasleitungen dürfen nicht in Aufzugsschächten, Lüftungsleitungen und Müllabwurfanlagen verlegt, durch Schornsteine geführt oder in Schornsteinwangen eingelassen werden. Dies gilt nicht, wenn solche Anlagen auf Dauer stillgelegt sind und erkennbar als Leitungsschacht benutzt werden.

Bei Leitungsführungen durch Bewegungsfugen, die zwei Gebäudeteile voneinander trennen, ist dafür zu sorgen, dass sich Relativbewegungen nicht schädlich auf die Leitungen auswirken können, z. B. durch Montage eines stabilen Mantelrohres aus Stahl. Bei Anforderungen an die Feuerwiderstandsfähigkeit (F30 bis F90) siehe Abschnitt "Durchführungen von TECEflex Gasleitungen durch Wände oder Decken von Gebäuden (…)".

TECEflex Gasleitungen dürfen nicht im Estrich verlegt werden. Sie dürfen jedoch unter Estrich in Aussparungen innerhalb der Rohdecke oder innerhalb einer Ausgleichsschicht unter der Trittschalldämmung auf der Rohdecke verlaufen. Die Anforderungen an Wärmeschutz und Trittschall müssen unbedingt beachtet werden.

Für TECEflex Gasrohre, die auf dem Rohfußboden verlegt werden, gilt ein Befestigungsabstand von mindestens einem Meter.

TECEflex Rohrdimension	Befestigungsabstand in m
14	1
16	1
20	1,15
25	1,3
32	1,5
40	1,8
50	2
63	2

Befestigungsabstände für auf Putz verlegte TECEflex Gasleitungen.

Es ist sicherzustellen, dass die auf dem Rohfußboden verlegten Gasrohre nach dem Verlegen nicht durch Leitern, Gerüste, Schiebkarren, ständiges Betreten öder Ähnliches beschädigt werden. Die Rohrleitungen sind unmittelbar vor der Einbringung des Estrichs zu überprüfen.

Verlegung im Außenbereich

TECEflex Gasrohre dürfen laut der TRGI 2018/TRF 2012 nicht im Außenbereich verlegt werden. Es gibt nur eine Ausnahme: Eine zum Anschluss von Gasgeräten zur Verwendung im Freien verwendete erdverlegte Gasleitung ist laut TRGI 2018 zulässig.

Solche erdverlegten Außenleitungen müssen bezüglich Verlegetiefe, Ausführung, usw. gemäß der TRGI 20108 verlegt werden.

Folgende Punkte müssen dabei unbedingt beachtet werden:

- Rohrleitungen sind vor Beschädigungen zu schützen.
- Eine Reparatur oder Erweiterung einer erdverlegten Gasleitung ist nach der Inbetriebnahme verboten. In einem solchen Fall muss die Gasleitung komplett ersetzt werden
- Der Leitungsabschnitt zwischen der erdverlegten Leitung und dem Gasgeräteanschluss darf nicht als freiverlegte Außenleitung ausgeführt werden.

Unzulässige Erwärmung von TECEflex Gasleitungen

Sollte ein TECEflex Gasrohr einer Temperatur über 100°C ausgesetzt worden sein, wie zum Beispiel durch das Verkleben von Bitumenbahnen, sind die betroffenen Leitungsteile zu erneuern.

Durchführungen von TECEflex Gasleitungen durch Wände oder Decken von Gebäuden der Klassen 1 + 2

Bei Rohrdurchführungen durch Wände oder Decken ist darauf zu achten, dass Rohrbeschädigungen ausgeschlossen sind. Dieses gilt auch innerhalb von Nutzungseinheiten wie Wohnungen und Wohngebäude der Klassen 3–5.

Durchführungen von TECEflex Gasleitungen durch Wände oder Decken von Gebäuden der Klassen 3–5

TECEflex Gasleitungen, die Wände und Decken durchdringen, an die Anforderungen an Feuerwiderstandsfähigkeit (F 30–F 90) gestellt werden, müssen entweder

durch Abschottungen mit einer Allgemeinen Bauaufsichtlichen Zulassung (ABZ) geführt werden, die eine Feuerwiderstandsfähigkeit von 30–90 Minuten haben (Rohrleitungen Feuerwiderstandsklasse R 30–R 90 nach DIN 4102-11 Ausgabe Dezember 1985); der Abstand der Abschottungen ergibt sich aus den jeweiligen ABZ; fehlen entsprechende Festlegungen ist ein Mindestabstand von 50 mm erforderlich, oder

 innerhalb von Installationsschächten und -kanälen geführt werden, die – einschließlich der Abschlüsse von Öffnungen – eine Feuerwiderstandsfähigkeit von 30–90 Minuten haben und aus nicht brennbaren Stoffen bestehen.

Achtung: Es ist möglich, dass sich die Brandschutzlösungen für die Gasinstallation von denen für wasserführende Rohre unterscheiden. Ein Beispiel hierfür sind die Rockwool Conlit-Lösungen.

TECEflex Gasleitungen in Flucht und Rettungswegen

Frei oder verdeckt verlegte TECEflex Gasleitungen sind in Rettungswegen, notwendigen Treppenräumen und in Räumen zwischen notwendigen Treppenräumen und Ausgängen ins Freie sowie notwendigen Fluren noch nicht zulässig.

Planung und Auslegung

Das TECEflex System kann für die Trinkwasser- und Heizungsinstallation verwendet werden. Seit Inkrafttreten der TRGI 2008 kann auch die Gasinstallation im Innenbereich bis 100 mbar mit TECEflex installiert werden. Jede Anwendung stellt spezielle Anforderungen an das Installationssystem. Dies ist bei der Planung besonders zu beachten.

Dämmung von Trinkwasser- und Heizungsrohrleitungen

Trinkwasserrohre sind so zu dämmen, dass maximal 30 s nach dem vollen Öffnen einer Entnahmestelle die Kaltwassertemperatur 25 °C nicht übersteigt und die Warmwassertemperatur mindestens 55 °C erreicht. Eine Dämmung von Rohrleitungen, Armaturen und Apparaten muss unter anderem Anforderungen hinsichtlich Wärmeabgabe, Wärmeaufnahme, akustischer Entkopplung, Korrosionsschutz, Brandschutz und gegebenenfalls der Aufnahme der thermischen Längenausdehnung erfüllen. Die Auswahl der Dämmung muss entsprechend dem jeweiligen Anwendungszweck erfolgen.

Es dürfen keine Dämmstoffe verwendet werden, die eine chemische Korrosion oder eine Kontaktkorrosion an Armaturen, Fittings oder Rohrleitungen auslösen können.

Dämmung gegen Frosteinwirkung

Werden wasserführende Rohrleitungen durch frostgefährdete Bereiche geführt, sind sie mindestens nach EnEV zu dämmen. Kommt es zu längeren Stagnationen, können die Leitungen trotz der Dämmung einfrieren. Hier sind gegebenenfalls Begleitheizungen einzusetzen.

Dämmung von Kaltwasserleitungen

Kaltwasser führende Trinkwasseranlagen sind nach DIN 1988-200 gegen Erwärmung zu schützen. Sie sind so zu dämmen, dass maximal 30 s nach dem vollen Öffnen einer Entnahmestelle die Kaltwassertemperatur 25 °C nicht übersteigt .Bei üblichen Betriebsbedingungen und Rohrleitungsführungen im Wohnungsbau gelten die in der nachfolgenden Tabelle aufgeführten Werte für die Mindestdämmschichtdicken als Richtwerte. Bei längeren Stagnationszeiten kann auch eine Dämmung keinen dauerhaften Garantie vor Erwärmung bieten. Die baulichen Gegebenheiten sind zu prüfen und gegebenenfalls müssen die Dämmstärken erhöht werden.

Beispiel: Schächte oder Vorwände können sich durch Heizungsleitungen stark erwärmen. Hier muss das Trinkwasser besonders geschützt werden. Eventuell ist es sinnvoll einen Schacht baulich zu teilen, um die Trinkwasserleitungen räumlich von den warmgehenden Leitungen zu trennen. Heiß gehenden Leitungen sollten in Vorwänden oder Schächten so weit wie möglich oben verlegt werden Die Kaltwasserleitung wird unten in der Vorwand geführt. Durch diese Anordnung entsteht eine stabile Temperaturschichtung innerhalb der Vorwand und ein Wärmetransport über Konvektion wird vermieden. Bei einer Gefahr der Durchfeuchtung der Dämmstoffe, wie zum Beispiel bei Kaltwasserleitungen durch Tauwasser, sind diffusionsdichte Dämmungen zu verwenden. Die Trinkwasserleitungen sind in einem ausreichenden Abstand zu warmgehenden Rohrleitungen zu verlegen. Eine Installation auf warmen Bauteilen, wie zum Beispiel einem Kamin oder in einer beheizten Wand, ist zu vermeiden.

Das TECEflex Programm bietet vorgedämmte Rohre mit 9 und 13 mm Dämmstärke an. Kaltwasserleitungen sind vor Tauwasserbildung zu schützen. Auf Tauwasserschutz kann verzichtet werden, wenn keine Beeinträchtigungen auf den Baukörper oder Einrichtungen zu erwarten sind. Rohrleitungen sind in Abhängigkeit von der Temperatur und dem Feuchtegehalt der Umgebungsluft so zu dämmen, dass eine Tauwasserbildung vermieden wird.

Nr.	Einbausituation	Dämmschichstärke bei λ = 0,040 W/(mK)*			
1	Rohrleitungen frei verlegt in nicht beheizten Räumen, Umgebungstemperatur \leq 20 °C (nur Tauwasserschutz)	9 mm			
2	Rohrleitungen verlegt in Rohrschächten, Bodenkanälen und abgehängten Decken, Umgebungstemperatur ≤ 25 °C	13 mm			
3	Rohrleitungen verlegt, z.B. in Technikkanälen und Schächten mit Wärmelasten und Umgebungstemperatur ≥ 25 °C	Dämmung wie Warmwasserleitun- gen Tabelle 8, Einbausituationen 1 bis 5			
4	Stockwerksleitungen und Einzelzuleitungen in Vorwandinstallationen	Rohr-in-Rohr oder 4 mm			
5	Stockwerksleitungen und Einzelzuleitungen im Fußbodenaufbau (auch neben nichtzir- kulierenden Trinkwasserleitungen warm)**	Rohr-in-Rohr oder 4 mm			
6	Stockwerksleitungen und Einzelzuleitungen im Fußbodenaufbau neben warmgehenden zirkulierenden Rohrleitungen**	13 mm			

^{*} Für andere Wärmeleitfähigkeiten sind die Dämmschichtdicken entsprechend umzurechnen; Referenztemperatur für die angegebene Wärmeleitfähigkeit: 10 °C.

^{**} In Verbindung mit Fußbodenheizungen sind die Rohrleitungen für Trinkwasser kalt so zu verlegen, dass die Anforderungen nach 3.6 eingehalten werden.

Planung und Auslegung

Bei Installation von Rohrleitungen mit Kontakt zum Baukörper (z. B. unter Putz, in Estrichkonstruktionen oder innerhalb von Vorwandtechnik verlegt) sind mindestens die TECEflex Rohre im Wellrohr zu verwenden. Ein zusätzlicher Schutz vor Tauwasserbildung durch Dämmung ist hier nicht erforderlich. Die Angaben in vorstehender Tabelle können auch unter der Annahme einer Trinkwassertemperatur von 10 °C für den Schutz gegen Tauwasserbildung auf der äußeren Dämmstoffoberfläche verwendet werden.

Dämmung von Warmwasser- und Wärmeverteilungsleitungen

Warmwasser führende Leitungen müssen gegen Wärmeabgabe geschützt werden. Die Anforderungen an die Dämmung werden in dem GEG (GebäudeEnergieGesetz) 2021 bzw. in der DIN 1988-200 Tabelle 9 definiert.

Auszug aus der GEG 2021:

Wärmedämmung von Rohrleitungen und Armaturen

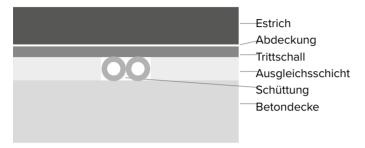
§ 69 Wärmeverteilungs- und Warmwasserleitungen sowie Armaturen

Werden Wärmeverteilungs- und Warmwasserleitungen sowie Armaturen erstmalig in ein Gebäude eingebaut oder werden sie ersetzt, hat der Bauherr oder der Eigentümer dafür Sorge zu tragen, dass die Wärmeabgabe der Rohrleitungen und Armaturen nach Anlage 8 begrenzt wird.

Nachrüstung bei heizungstechnischen Anlagen

- § 71 Dämmung von Wärmeverteilungs- und Warmwasserleitungen
 - (1) Der Eigentümer eines Gebäudes hat dafür Sorge zu tragen, dass bei heizungstechnischen Anlagen bisher ungedämmte, zugängliche Wärmeverteilungs- und Warmwasserleitungen, die sich nicht in beheizten Räumen befinden, die Wärmeabgabe der Rohrleitungen nach Anlage 8 begrenzt wird.
 - (2) Absatz 1 ist nicht anzuwenden, soweit die für eine Nachrüstung erforderlichen Aufwendungen durch die eintretenden Einsparungen nicht innerhalb angemessener Frist erwirtschaftet werden können.

Anlage 8 (zu den §§ 69, 70 und 71 Absatz 1) Anforderungen an die Wärmedämmung von Rohrleitungen und Armaturen


 Wärmedämmung von Wärmeverteilungs- und Warmwasserleitungen sowie Armaturen in den Fällen des § 69 und § 71 Absatz 1

- a) Wärmeverteilungs- und Warmwasserleitungen sowie Armaturen sind wie folgt zu dämmen:
 - aa) Bei Leitungen und Armaturen mit einem Innendurchmesser von bis zu 22 Millimetern beträgt die Mindestdicke der Dämmschicht, bezogen auf eine Wärmeleitfähigkeit von 0,035 Watt pro Meter und Kelvin, 20 Millimeter.
 - bb) Bei Leitungen und Armaturen mit einem Innendurchmesser von mehr als 22 Millimetern und bis zu 35 Millimetern beträgt die Mindestdicke der Dämmschicht, bezogen auf eine Wärmeleitfähigkeit von 0,035 Watt pro Meter und Kelvin, 30 Millimeter.
 - cc) Bei Leitungen und Armaturen mit einem Innendurchmesser von mehr als 100 Millimetern beträgt die Mindestdicke der Dämmschicht, bezogen auf eine Wärmeleitfähigkeit von 0,035 Watt pro Meter und Kelvin, 100 Millimeter.
 - ee) Bei Leitungen und Armaturen nach den Doppelbuchstaben aa bis dd, die sich in Wand- und Deckendurchbrüchen, im Kreuzungsbereich von Leitungen, an Leitungsverbindungsstellen oder bei zentralen Leitungsnetzverteilern befinden, beträgt die Mindestdicke der Dämmschicht, bezogen auf eine Wärmeleitfähigkeit von 0,035 Watt pro Meter und Kelvin, die Hälfte des jeweiligen Wertes nach den Doppelbuchstaben aa bis dd
 - ff) Bei Leitungen und Armaturen nach Doppelbuchstabe ff, die sich in einem Fußbodenaufbau befinden, beträgt die Mindestdicke der Dämmschicht, bezogen auf eine Wärmeleitfähigkeit von 0,035 Watt pro Meter und Kelvin, 6 Millimeter.
 - hh) Soweit in den Fällen des § 69 Wärmeverteilungs- und Warmwasserleitungen an Außenluft renzen, beträgt die Mindestdicke der Dämmschicht, bezogen auf eine Wärmeleitfähigkeit von 0,035 Watt pro Meter und Kelvin, das Zweifache des jeweiligen Wertes nach den Doppelbuchstaben aa bis dd.

Bei Materialen mit anderen Wärmeleitfähigkeiten als 0,035 W/(m·K) sind die Mindestdicken der Dämmschichten entsprechend umzurechnen. Die vorgedämmten TECEflex Rohre mit 9 bzw. 13 mm Dämmstärke entsprechen dem Absatz gg, die Rohre mit einer Dämmstärke von 26 mm der im Absatz aa geforderten Dämmung.

Dämmung von Rohrleitungen im Fußbodenaufbau

Die DIN 18560-2 schreibt vor, dass die Trittschalldämmung vollflächig und ohne Unterbrechungen verlegt sein muss. Sollten Installationsrohre auf der Rohbetondecke verlegt werden, ist eine geeignete Ausgleichsschicht bis zur Höhe der Rohroberkante einschließlich Rohrdämmung einzubringen. Auf diese kann dann die Trittschalldämmung verlegt werden.

Verlegungsbeispiel für eine TECEflex Rohrleitung im Fußboden

Die Dämmplatten werden bis an die Rohrleitungen verlegt. Die Zwischenräume sind mit einer geeigneten Schüttung zu verfüllen. Auf diese Konstruktion kann die Trittschalldämmung verlegt werden. Es eignet sich zum Beispiel eine EPS Dämmung vom Typ DR 30-2. Es ist darauf zu achten, dass nur eine Trittschallschicht eingesetzt wird. Um Wärmebrücken zu minimieren, sind die Dämmstoffe fugendicht zu verarbeiten.

Dimensionierung von Trinkwasseranlagen

Für Planung und Errichtung von Trinkwasseranlagen gelten die Technischen Regeln die in der TRWI zusammengefasst sind. Die relevantesten Regeln sind die DIN 1988 Reihe, die DIN EN 806, die DIN EN 1717 sowie die DVGW Arbeitsblätter W551 und W553 sowie die VDI 6023.

Hygienische Anforderungen

Eine Trinkwasserinstallation muss bei bestimmungsgemäßem Gebrauch gewährleisten, dass das Wasser an der Zapfstelle den Anforderungen der Trinkwasserverordnung entspricht. Für alle für den Trinkwassereinsatz gedachten TECEflex Metallfittings werden nur Werkstoffe der Metall-Bewertungsgrundlage des UBA (Stand 21.11.2019) oder der 4MS-Werkstoffliste (Stand 5.3.2019) verwendet. Die biologische und chemische Eignung des TECEflex Systems ist durch die DVGW- und weitere europäische Zertifizierungen belegt. Die technischen Maßnahmen zur Verminderung des Legionellenwachstums sowie die Planung, der Betrieb und die Sanierung von Trinkwasseranlagen sind in dem DVGW-Arbeitsblatt W 551 beschrieben. Folgende Punkte sind unter anderem für die Planung zu beachten:

Dokumentation

Das DVGW-Arbeitsblatt W 551 fordert eine Dokumentation der Trinkwasserinstallation. Sie ist für Neuanlagen, aber auch für Änderungen an bestehenden Anlagen zu erstellen. Liegen für mögliche Sanierungsmaßnahmen keine Unterlagen vor, ist eine Bestandsaufnahme durchzuführen. Die Dokumentation soll die Installationsbestandspläne, die Anlagenbeschreibung, die Anlagendaten und die Wartungs- und Bedienungsanleitung beinhalten. Sie ist dem Anlagenbetreiber bei Inbetriebnahme der Trinkwasserinstallation zu übergeben.

Zirkulationsleitungen

Zirkulationsleitungen sind nach DIN 1988-300 auszuführen.

TECEflex Ø in mm	Wasserinhalt pro Meter in Liter	Leitungslänge mit 3 Litern Inhalt in m
16	0,11	27,27
20	0,16	18,75
25	0,25	12,00
32	0,45	6,67
40	0,80	3,75
50	1,32	2,27
63	2,04	1,47

Wasserinhalt von TECEflex Installationsrohren

Zirkulationsleitungen sind bis unmittelbar vor Durchgangsmischarmaturen zu führen. Zum Schutz der Erwärmung des Kaltwassers wird zur Anbindung von Armaturen der Einsatz der TECE-Hygienebox empfohlen.

Zirkulationssysteme und selbstregelnde Begleitheizungen sind so zu betreiben, dass die Wassertemperatur im System um nicht mehr als 5 K gegenüber der Warmwasseraustrittstemperatur des Trinkwassererwärmers unterschritten wird. Aus hygienischen Gründen ist eine Wasseraustrittstemperatur am Warmwasserbereiter von mindestens 60 °C einzuhalten. TECE empfiehlt einen dauerhaften Betrieb der Zirkulationspumpe, damit die Temperaturen im Zirkulationssystem immer im hygienischen Bereich betrieben werden. Schwerkraftzirkulationen sind aus hygienischer Sicht nicht zu empfehlen.

Achtung! Die Warmwasserzirkulation darf nicht in die Ringleitung mit eingebunden werden. Durch eine ständige Zirkulation von heißem Wasser durch die Doppelwandscheiben werden diese so weit aufgeheizt, so dass sie das kalte Trinkwasser in der Nachbarwandscheibe unzulässig aufwärmen. Zudem werden die Armaturen sehr stark aufgeheizt. Sollte eine Warmwasserzirkulationsleitung bis an die Zapfstelle geführt werden empfiehlt TECE die Anbindung mit der Hygienebox.

Planung und Auslegung

Schutz des Kaltwasser- Armaturenanschlusses vor Erwärmung durch zirkulierendes Heißwasser PWHC

bei dem Armaturenanschluss mit zirkulierendem Heißwasser ist darauf zu achten, dass der Anschluss des Kaltwassers nicht unzulässig erwärmt wird. Der Heißwasser Armaturenanschluss kann über eine Stichleitung von oben mit der Heißwasserzirkulationsleitung hergestellt werden um den Wärmefluss zum Kaltwasseranschluss zu reduzieren. Es ist aber zu beachten, dass die Stichleitung bei nicht bestimmungsgemäßer Nutzung potentiell die Gefahr der Stagnation birgt. Eine sichere thermische Entkopplung des Armaturenanschluss mit der Heißwasserzirkulation bietet die TECE-Hygienebox. Sie entkoppelt thermisch die PWHC Leitung (Heißwasserzirkulation) vom Armaturenanschluss und verhindert so zuverlässig den Wärmetransport über den Armaturenkörper zum Kaltwasseranschluss. Als industriell vorgefertigte Komponente schützt sie das Kaltwasser vor unzulässiger Erwärmung über 25 °C.

Bei der TECE-Hygienebox verläuft die Zirkulation in enem fest definierten Abstand oberhalb der Armatur. Die Versorgung mit Warmwasser erfolgt über eine kurze, senkrechte Stichleitung. Diese ist so dimensioniert, dass sich nach der Wasserentnahme eine stabile Schichtung einstellt. Eine Wärmeübertragung an die Armatur findet so nicht mehr statt.

TECE-Hygienebox

Anschluss an Trinkwassererwärmer und Durchlauferhitzer

Ungeregelte oder hydraulisch gesteuerte Durchlauferhitzer können das angeschlossene TECEflex Rohr durch zu hohen Druck und Übertemperaturen schädigen.
TECEflex darf nur direkt an elektronisch geregelte Geräte

angeschlossen werden. Bei ungeregelten Geräten ist ein Metallrohr mit einer Mindestlänge von einem Meter vorzuschalten. Die Herstellerangaben zu den Durchlauferhitzern sind zu beachten.

Bei über Solaranlage oder Feststoffkessel beheizten Warmwasserspeichern können Temperaturen von über 100 °C auftreten! In diesen Fällen ist eine temperaturbegrenzende Sicherheitsarmatur dem TECEflex Netz vorzuschalten.

Gemäß DIN EN 806-5 dürfen Kunststoffrohrleitungen nicht direkt an Trinkwassererwärmer und Durchlauferhitzer angeschlossen werden, wenn die Sicherheitseinrichtungen kurzfristig (10 s) Höchsttemperaturen über 95 °C und einen Wasserdruck über dem höchsten Systembetriebsdruck zulassen.

Verlustbeiwerte von TECEflex Fittings

Fitting	Ausführung	Zetawert	Äquivalente Rohrlänge (m)
Übergangsverbinder	14 mm x ½"	0,8	0,2
Kupplung	14 mm	1	0,3
Winkel	14 mm	4	1,1
T-Stück DG	14 mm	0,8	0,2
T-Stück AG	14 mm	4	1,1
Übergangsverbinder	16 mm x ½"	1	0,3
Kupplung	16 mm	0,5	0,2
Winkel	16 mm	3,2	1,3
Bogen	16 mm	1,1	1,3
T-Stück DG	16 mm	0,8	0,3
T-Stück AG	16 mm	3,6	1,5
Übergangsverbinder	20 mm x ³ / ₄ "	1,7	0,6
Kupplung	20 mm	0,9	0,5
Winkel	20 mm	4,3	2,4
Bogen	20 mm	1,9	2,4
T-Stück DG	20 mm	1,1	0,6
T-Stück AG	20 mm	4,7	2,6
Übergangsverbinder	25 mm x ³ / ₄ "	0,8	0,4
Kupplung	25 mm	0,3	0,2
Winkel	25 mm	2,3	1,7
Bogen	25 mm	1,1	1,7
T-Stück DG	25 mm	0,6	0,4
T-Stück AG	25 mm	2,6	1,9
Übergangsverbinder	32 mm x 1"	0,5	0,3
Kupplung	32 mm	0,2	0,2
Winkel	32 mm	2,4	2,5
Bogen	32 mm	0,6	2,5
T-Stück DG	32 mm	0,3	0,3
T-Stück AG	32 mm	2,5	2,6
Übergangsverbinder	40 mm x 1¼"	0,4	0,4
Kupplung	40 mm	0,2	0,2
Winkel	40 mm	2,1	2
Bogen	40 mm	0,6	2
T-Stück DG	40 mm	0,3	0,3
T-Stück AG	40 mm	2,2	2,2
Übergangsverbinder	50 mm x 1½"	0,4	0,5
Kupplung	50 mm	0,1	0,2
Winkel	50 mm	1,8	2,3
Bogen	50 mm	0,5	2,3
T-Stück DG	50 mm	0,2	2,3
T-Stück AG	50 mm	1,9	2,5
Übergangsverbinder	63 mm x 2"	0,3	0,6
Kupplung	63 mm	0,1	0,2
Winkel	63 mm	2,2	3,7
Bogen	63 mm	0,6	3,7
T-Stück DG	63 mm	0,5	0,8
T-Stück AG	63 mm	2,2	3,7

Planung und Auslegung

Druckverlusttabellen in der Trinkwasserinstallation – Dimensionen 14/16/20/25 mm

	TECEflex Verbundrohre – Druckverluste durch Rohrreibung für Trinkwasserleitungen											
		Dim. 14			Dim. 16			Dim. 20			Dim. 25	
Wasser-	V	m	R	V	m	R	V	m	R	V	m	R
geschw			hPa/m			hPa/m			hPa/m			hPa/m
m/s	l/s	kg/h	mbar/m	l/s	kg/h	mbar/m	l/s	kg/h	mbar/m	l/s	kg/h	mbar/m
0,1	0,008	28,3	0,4	0,011	38,0	0,3	0,016	58,6	0,2	0,025	91,6	0,1
0,2	0,012	42,4	0,6	0,016	57,1	0,5	0,024	87,9	0,3	0,038	137,4	0,2
0,2	0,016	56,5	0,8	0,021	76,1	0,6	0,033	117,3	0,4	0,051	183,2	0,5
0,3	0,020	70,7	1,0	0,026	95,1	0,8	0,041	146,6	1,0	0,064	229,0	0,7
0,3	0,024	84,8	1,3	0,032	114,1	1,8	0,049	175,9	1,3	0,076	274,8	1,0
0,4	0,027	99,0	2,8	0,037	133,2	2,3	0,057	205,2	1,7	0,089	320,6	1,3
0,4	0,031	113,1	3,5	0,042	152,2	2,9	0,065	234,5	2,2	0,102	366,4	1,6
0,5	0,035	127,2	4,3	0,048	171,2	3,5	0,073	263,8	2,7	0,115	412,2	2,0
0,5	0,039	141,4	5,1	0,053	190,2	4,2	0,081	293,1	3,2	0,127	458,0	2,4
0,6	0,043	155,5	6,1	0,058	209,3	5,0	0,090	322,5	3,8	0,140	503,8	2,8
0,6	0,047	169,6	7,0	0,063	228,3	5,8	0,098	351,8	4,4	0,153	549,7	3,3
0,7	0,051	183,8	8,1	0,069	247,3	6,7	0,106	381,1	5,1	0,165	595,5	3,8
0,7	0,055	197,9	9,2	0,074	266,3	7,6	0,114	410,4	5,7	0,178	641,3	4,3
0,8	0,059	212,1	10,3	0,079	285,3	8,5	0,122	439,7	6,5	0,191	687,1	4,9
0,8	0,063	226,2	11,6	0,085	304,4	9,6	0,130	469,0	7,3	0,204	732,9	5,5
0,9	0,067	240,3	12,9	0,090	323,4	10,6	0,138	498,4	8,1	0,216	778,7	6,1
0,9	0,071	254,5	14,2	0,095	342,4	11,7	0,147	527,7	8,9	0,229	824,5	6,7
1,0	0,075	268,6	15,6	0,100	361,4	12,9	0,155	557,0	9,8	0,242	870,3	7,4
1,0	0,079	282,7	17,1	0,106	380,5	14,1	0,163	586,3	10,7	0,254	916,1	8,1
1,1	0,082	296,9	18,6	0,111	399,5	15,4	0,171	615,6	11,7	0,267	961,9	8,8
1,2	0,094	339,3	23,5	0,127	456,6	19,4	0,195	703,6	14,8	0,305	1099,3	11,2
1,3	0,102	367,6	27,0	0,137	494,6	22,4	0,212	762,2	17,0	0,331	1190,9	12,9
1,4	0,113	405,3	32,1	0,151	545,3	26,6	0,233	840,4	20,2	0,365	1313,1	15,3
1,5	0,118	424,1	34,8	0,159	570,7	28,8	0,244	879,4	21,9	0,382	1374,1	16,6
1,6	0,126	452,4	39,0	0,169	608,7	32,3	0,261	938,1	24,6	0,407	1465,7	18,6
1,7	0,134	480,7	43,4	0,180	646,8	36,0	0,277	996,7	27,4	0,433	1557,4	20,7
1,8	0,141	508,9	48,0	0,190	684,8	39,8	0,293	1055,3	30,3	0,458	1649,0	23,0
1,9	0,149	537,2	52,9	0,201	722,9	43,8	0,309	1114,0	33,4	0,483	1740,6	25,3
2,0	0,157	565,5	57,9	0,211	760,9	48,0	0,326	1172,6	36,6	0,509	1832,2	27,7
2,1	0,165	593,8	63,2	0,222	799,0	52,4	0,342	1231,2	40,0	0,534	1923,8	30,3
2,2	0,173	622,0	68,6	0,233	837,0	56,9	0,358	1289,9	43,4	0,560	2015,4	32,9
2,3	0,181	650,3	74,3	0,243	875,1	61,7	0,375	1348,5	47,0	0,585	2107,0	35,6
2,4	0,188	678,6	80,2	0,254	913,1	66,5	0,391	1407,1	50,8	0,611	2198,6	38,5
2,5	0,196	706,9	86,3	0,264	951,1	71,6	0,407	1465,7	54,6	0,636	2290,2	41,4
2,6	0,204	735,1		0,275	989,2		0,423	1524,4		0,662	2381,8	44,4
2,7	0,212	763,4		0,285	1027,2		0,440	1583,0		0,687	2473,4	47,5
2,8	0,220	791,7		0,296	1065,3		0,456	1641,6		0,713	2565,0	50,8
2,9	0,228	820,0		0,306	1103,3		0,472	1700,3		0,738	2656,7	54,1
3,0	0,236	848,2		0,317	1141,4		0,489	1758,9		0,763	2748,3	57,5
3,6	0,283	1017,9		0,380	1369,7		0,586	2110,7		0,916	3297,9	80,1
4,0	0,314	1131,0		0,423	1521,8		0,651 0,749	2345,2		1,018	3664,4	97,1
4,6	0,361	1300,6 1413,7		0,486	1750,1		-	2697,0		1,171	4214,0	125,3
5,0	0,393	1413,/		0,528	1902,3		0,814	2931,5		1,272	4580,4	146,0

Druckverlusttabellen in der Trinkwasserinstallation – Dimensionen 32/40/50/63 mm

TECEflex Verbundrohre – Druckverluste durch Rohrreibung für Trinkwasserleitungen												
		Dim. 32			Dim. 40			Dim. 50			Dim. 63	
Wasser-	V	m	R	V	m	R	V	m	R	V	m	R
geschw			hPa/m			hPa/m			hPa/m			hPa/m
m/s	l/s	kg/h	mbar/m	l/s	kg/h	mbar/m	l/s	kg/h	mbar/m	l/s	kg/h	mbar/m
0,1	0,045	162,9	0,1	0,080	289,5	0,1	0,132	475,3	0,1	0,204	735,4	0,0
0,2	0,068	244,3	0,2	0,121	434,3	0,1	0,198	712,9	0,1	0,306	1103,1	0,1
0,2	0,090	325,7	0,3	0,161	579,1	0,2	0,264	950,6	0,2	0,409	1470,8	0,1
0,3	0,113	407,2	0,5	0,201	723,8	0,3	0,330	1188,2	0,3	0,511	1838,5	0,2
0,3	0,136	488,6	0,7	0,241	868,6	0,5	0,396	1425,9	0,3	0,613	2206,2	0,3
0,4	0,158	570,0	0,9	0,281	1013,4	0,6	0,462	1663,5	0,5	0,715	2574,0	0,3
0,4	0,181	651,4	1,1	0,322	1158,1	0,8	0,528	1901,2	0,6	0,817	2941,7	0,4
0,5	0,204	732,9	1,4	0,362	1302,9	1,0	0,594	2138,8	0,7	0,919	3309,4	0,5
0,5	0,226	814,3	1,7	0,402	1447,6	1,2	0,660	2376,5	0,8	1,021	3677,1	0,6
0,6	0,249	895,7	2,0	0,442	1592,4	1,4	0,726	2614,1	1,0	1,124	4044,8	0,8
0,6	0,271	977,2	2,3	0,483	1737,2	1,6	0,792	2851,7	1,2	1,226	4412,5	0,9
0,7	0,294	1058,6	2,6	0,523	1881,9	1,8	0,858	3089,4	1,3	1,328	4780,2	1,0
0,7	0,317	1140,0	3,0	0,563	2026,7	2,1	0,924	3327,0	1,5	1,430	5147,9	1,2
0,8	0,339	1221,5	3,4	0,603	2171,5	2,4	0,990	3564,7	1,7	1,532	5515,6	1,3
0,8	0,362	1302,9	3,8	0,643	2316,2	2,6	1,056	3802,3	1,9	1,634	5883,3	1,5
0,9	0,385	1384,3	4,2	0,684	2461,0	2,9	1,122	4040,0	2,2	1,736	6251,0	1,7
0,9	0,407	1465,7	4,7	0,724	2605,8	3,3	1,188	4277,6	2,4	1,839	6618,7	1,8
1,0	0,430	1547,2	5,1	0,764	2750,5	3,6	1,254	4515,3	2,6	1,941	6986,4	2,0
1,0	0,452	1628,6	5,6	0,804	2895,3	3,9	1,320	4752,9	2,9	2,043	7354,2	2,2
1,1	0,475	1710,0	6,1	0,844	3040,1	4,3	1,386	4990,6	3,2	2,145	7721,9	2,4
1,2	0,543	1954,3	7,8	0,965	3474,4	5,4	1,584	5703,5	4,0	2,451	8825,0	3,1
1,3	0,588	2117,2	9,0	1,046	3763,9	6,3	1,716	6178,8	4,6	2,656	9560,4	3,5
1,4	0,648	2334,3	10,7	1,153	4149,9	7,5	1,892	6812,5	5,5	2,928	10541,0	4,2
1,5	0,679	2442,9	11,6	1,206	4342,9	8,1	1,980	7129,4	6,0	3,064	11031,2	4,6
1,6	0,724	2605,8	13,0	1,287	4632,5	9,1	2,112	7604,7	6,7	3,269	11766,6	5,1
1,7	0,769	2768,6	14,5	1,367	4922,0	10,1	2,244	8080,0	7,5	3,473	12502,1	5,7
1,8	0,814	2931,5	16,0	1,448	5211,5	11,2	2,376	8555,2	8,3	3,677	13237,5	6,3
1,9	0,860	3094,3	17,7	1,528	5501,1	12,4	2,508	9030,5	9,1	3,881	13972,9	7,0
2,0	0,905	3257,2	19,4	1,608	5790,6	13,6	2,641	9505,8	10,0	4,086	14708,3	7,7
2,1	0,950	3420,1	21,2	1,689	6080,1	14,8	2,773	9981,1	11,0	4,290	15443,7	8,4
2,2	0,995	3582,9	23,0	1,769	6369,6	16,1	2,905	10456,4	11,9	4,494	16179,1	9,1
2,3	1,040	3745,8	24,9	1,850	6659,2	17,5	3,037	10931,7	12,9	4,698	16914,6	9,9
2,4	1,086	3908,6	26,9	1,930	6948,7	18,9	3,169	11407,0	13,9	4,903	17650,0	10,7
2,5	1,131	4071,5	29,0	2,011	7238,2	20,3	3,301	11882,3	15,0	5,107	18385,4	11,5
2,6	1,176	4234,4	31,1	2,091	7527,8	21,8	3,433	12357,6	16,1	5,311	19120,8	12,4
2,7	1,221	4397,2	33,3	2,171	7817,3	23,4	3,565	12832,9	17,3	5,516	19856,2	13,2
2,8	1,267	4560,1	35,6	2,252	8106,8	25,0	3,697	13308,2	18,5	5,720	20591,6	14,2
2,9	1,312	4722,9	37,9	2,332	8396,3	26,6	3,829	13783,5	19,7	5,924	21327,0	15,1
3,0	1,357	4885,8	40,3	2,413	8685,9	28,3	3,961	14258,7	20,9	6,128	22062,5	16,0
3,6	1,629	5863,0	56,2	2,895	10423,1	39,5	4,753	17110,5	29,2	7,354	26475,0	22,4
4,0	1,810	6514,4	68,1	3,217	11581,2	47,9	5,281	19011,7	35,4	8,171	29416,6	27,2
4,6	2,081	7491,6	88,0	3,700	13318,3	61,9	6,073	21863,4	45,8	9,397	33829,1	35,2
5,0	2,262	8143,0	102,6	4,021	14476,5	72,2	6,601	23764,6	53,4	10,214	36770,8	41,0

Planung und Auslegung

Druckverlusttabellen für die Heizungsinstallation – Dimensionen 14/16/20/25 mm

	Druckverlust durch Rohrreibung in der Heizungsinstallation												
		\ncehlusele	istuna (M)		Massa	Dim.	14	Dim.	16	Dim.	. 20	Dim.	25
Anschlussleistung (W)					Massen- strom -	V	R	V	R	٧	R	V	R
Spreizung (K)			300111		hPa/m		hPa/m		hPa/m		hPa/m		
20	K	15 K	10 K	5 K	kg/h	m/s	mbar/m	m/s	mbar/m	m/s	mbar/m	m/s	mbar/m
	200	150	100	50	8,60	0,03	0,13	0,02	0,07				
	300	225	150	75	12,90	0,05	0,19	0,03	0,11				
	400	300	200	100	17,20	0,06	0,25	0,05	0,14				
	600	450	300	150	25,80	0,09	0,38	0,07	0,21				
	800	600	400	200	34,39	0,12	0,51	0,09	0,28				
	1000	750	500	250	42,99	0,15	0,64	0,11	0,35				
	1200	900	600	300	51,59	0,18	0,76	0,14	0,42				
	1400	1050	700	350	60,19	0,21	0,89	0,16	0,49				
	1600	1200	800	400	68,79	0,24	1,02	0,18	0,56				
	1800	1350	900	450	77,39	0,27	1,15	0,20	0,63				
	2000	1500	1000	500	85,98	0,30	2,21	0,23	0,70	0,15	0,30		
	2300	1725	1150	575	98,88	0,35	2,80	0,26	0,81	0,17	0,34		
	2800	2100	1400	700	120,38	0,43	3,91	0,32	1,94	0,21	0,42		
;	3000	2250	1500	750	128,98	0,46	4,40	0,34	2,18	0,22	0,79		
;	3500	2625	1750	875	150,47	0,53	5,73	0,40	2,84	0,26	1,02		
	4000	3000	2000	1000	171,97	0,61	7,21	0,45	3,57	0,29	1,29	0,19	0,45
	4500	3375	2250	1125	193,47	0,68	8,83	0,51	4,37	0,33	1,57	0,21	0,55
	5000	3750	2500	1250	214,96	0,76	10,60	0,57	5,24	0,37	1,88	0,23	0,66
	5500	4125	2750	1375	236,46	0,84	12,50	0,62	6,17	0,40	2,22	0,26	0,77
	6000	4500	3000	1500	257,95	0,91	14,55	0,68	7,18	0,44	2,57	0,28	0,90
	6500	4875	3250	1625	279,45	0,99	16,73	0,73	8,25	0,48	2,95	0,31	1,03
-	7000	5250	3500	1750	300,95	1,06	19,04	0,79	9,38	0,51	3,36	0,33	1,17
	7500	5625	3750	1875	322,44			0,85	10,58	0,55	3,78	0,35	1,31
	8000	6000	4000	2000	343,94			0,90	11,84	0,59	4,23	0,38	1,47
	8500	6375	4250	2125	365,43			0,96	13,16	0,62	4,70	0,40	1,63
9	9000	6750	4500	2250	386,93			1,02	14,55	0,66	5,19	0,42	1,80
9	9500	7125	4750	2375	408,43			1,07	16,00	0,70	5,70	0,45	1,98
10	0000	7500	5000	2500	429,92					0,73	6,23	0,47	2,16
10	0500	7875	5250	2625	451,42					0,77	6,79	0,49	2,35
1	1000	8250	5500	2750	472,91					0,81	7,36	0,52	2,55
1	1500	8625	5750	2875	494,41					0,84	7,96	0,54	2,75
1:	2500	9375	6250	3125	537,40					0,92	9,21	0,59	3,18
1:	3000	9750	6500	3250	558,90					0,95	9,86	0,61	3,40
14	4000	10500	7000	3500	601,89					1,03	11,23	0,66	3,87
1!	5000	11250	7500	3750	644,88							0,70	4,37
10	6000	12000	8000	4000	687,88	ĺ						0,75	4,89
1	7000	12750	8500	4250	730,87	İ						0,80	5,44
18	8000	13500	9000	4500	773,86	ĺ						0,85	
	9000	14250	9500	4750	816,85	ĺ						0,89	
20	0000	15000	10000	5000	859,85	İ						0,94	
	2000	16500	11000	5500	945,83							1,03	

Druckverlusttabellen für die Heizungsinstallation – Dimensionen 32/40/50/63 mm (Teil 1)

			С)ruckverlust	durch Rohr	reibung in c	ler Heizung	sinstallation				
	Apachlusala	sicture (MA)			Dim.	. 32	Dim.	40	Dim.	. 50	Dim.	63
,	Anschlussle	eistung (vv)		Massen- strom	V	R	V	R	V	R	V	R
	Spreizu	ıng (K)		300111		hPa/m		hPa/m		hPa/m		hPa/m
20 K	15 K	10 K	5 K	kg/h	m/s	mbar/m	m/s	mbar/m	m/s	mbar/m	m/s	mbar/m
7000	5250	3500	1750	300,95	0,18	0,30						
7500	5625	3750	1875	322,44	0,20	0,34						
8000	6000	4000	2000	343,94	0,21	0,38						
8500	6375	4250	2125	365,43	0,22	0,42						
9000	6750	4500	2250	386,93	0,24	0,46						
9500	7125	4750	2375	408,43	0,25	0,51						
10000	7500	5000	2500	429,92	0,26	0,55						
10500	7875	5250	2625	451,42	0,28	0,60						
11000	8250	5500	2750	472,91	0,29	0,65	0,16	0,17				
11500	8625	5750	2875	494,41	0,30	0,70	0,17	0,18				
12500	9375	6250	3125	537,40	0,33	0,81	0,19	0,21				
13000	9750	6500	3250	558,90	0,34	0,87	0,19	0,22				
14000	10500	7000	3500	601,89	0,37	0,99	0,21	0,25				
15000	11250	7500	3750	644,88	0,40	1,11	0,22	0,28				
16000	12000	8000	4000	687,88	0,42	1,24	0,24	0,32				
17000	12750	8500	4250	730,87	0,45	1,38	0,25	0,35				
18000	13500	9000	4500	773,86	0,48	1,53	0,27	0,39				
19000	14250	9500	4750	816,85	0,50	1,68	0,28	0,43				
20000	15000	10000	5000	859,85	0,53	1,84	0,30	0,47				
22000	16500	11000	5500	945,83	0,58	2,17	0,33	0,55				
24000	18000	12000	6000	1031,81	0,63	2,52	0,36	0,64				
26000	19500	13000	6500	1117,80	0,69	2,90	0,39	0,74				
28000	21000	14000	7000	1203,78	0,74	3,31	0,42	0,84				
30000	22500	15000	7500	1289,77	0,79	3,73	0,45	0,95	0,27	0,29		
32000	24000	16000	8000	1375,75	0,85	4,19	0,48	1,06	0,29	0,33		
34000	25500	17000	8500	1461,74	0,90	4,66	0,51	1,18	0,31	0,36		
36000	27000	18000	9000	1547,72	0,95	5,15	0,53	1,30	0,33	0,40		
38000	28500	19000	9500	1633,71	1,00	5,67	0,56	1,43	0,34	0,44		
40000	30000	20000	10000	1719,69			0,59	1,57	0,36	0,48		
42000	31500	21000	10500	1805,67			0,62	1,71	0,38	0,52		
44000	33000	22000	11000	1891,66			0,65	1,85	0,40	0,57		
46000	34500	23000	11500	1977,64			0,68	2,01	0,42	0,62		
48000	36000	24000	12000	2063,63			0,71	2,16	0,43	0,66	0,28	0,23
50000	37500	25000	12500	2149,61			0,74	2,32	0,45	0,71	0,29	0,25
52000	39000	26000	13000	2235,60			0,77	2,49	0,47	0,76	0,30	0,27
54000	40500	27000	13500	2321,58			0,80	2,66	0,49	0,81	0,32	0,29
56000	42000	28000	14000	2407,57			0,83	2,84	0,51	0,87	0,33	0,31
58000	43500	29000	14500	2493,55			0,86	3,02	0,52	0,92	0,34	0,33
60000	45000	30000	15000	2579,54			0,89	3,21	0,54	0,98	0,35	0,35
62000	46500	31000	15500	2665,52			0,92	3,40	0,56	1,04	0,36	0,37
64000	48000	32000	16000	2751,50			0,95	3,60	0,58	1,10	0,37	0,39
66000	49500	33000	16500	2837,49			0,98	3,80	0,60	1,16	0,39	0,41
68000	51000	34000	17000	2923,47			1,01	4,00	0,62	1,22	0,40	0,43
70000	52500	35000	17500	3009,46			1,04	4,22	0,63	1,29	0,41	0,45
72000	54000	36000	18000	3095,44			1,07	4,43	0,65	1,35	0,42	0,48

Planung und Auslegung

Druckverlusttabellen für die Heizungsinstallation – Dimensionen 32/40/50/63 mm (Teil 2)

				Druckverlust	durch Roh	rreibung in d	der Heizung	gsinstallation	1			
	A	:-+···- · (\A)			Dim	ı. 32	Dim	ı. 40	Dim	. 50	Dim.	. 63
	Anschlussle	eistung (W)		Massen-	V	R	V	R	٧	R	٧	R
	Spreizu	ıng (K)		strom		hPa/m		hPa/m		hPa/m		hPa/m
20 K	15 K	10 K	5 K	kg/h	m/s	mbar/m	m/s	mbar/m	m/s	mbar/m	m/s	mbar/m
76000	57000	38000	19000	3267,41					0,69	1,49	0,44	0,52
80000	60000	40000	20000	3439,38					0,72	1,63	0,47	0,57
84000	63000	42000	21000	3611,35					0,76	1,78	0,49	0,63
88000	66000	44000	22000	3783,32					0,80	1,93	0,51	0,68
92000	69000	46000	23000	3955,29					0,83	2,09	0,54	0,73
96000	72000	48000	24000	4127,26					0,87	2,25	0,56	0,79
100000	75000	50000	25000	4299,23					0,90	2,42	0,58	0,85
104000	78000	52000	26000	4471,20					0,94	2,59	0,61	0,91
108000	81000	54000	27000	4643,16					0,98	2,77	0,63	0,98
112000	84000	56000	28000	4815,13					1,01	2,96	0,65	1,04
116000	87000	58000	29000	4987,10					1,05	3,15	0,68	1,11
120000	90000	60000	30000	5159,07					1,09	3,35	0,70	1,18
124000	93000	62000	31000	5331,04							0,73	1,25
128000	96000	64000	32000	5503,01							0,75	1,32
132000	99000	66000	33000	5674,98							0,77	1,39
136000	102000	68000	34000	5846,95							0,80	1,47
140000	105000	70000	35000	6018,92							0,82	1,55
144000	108000	72000	36000	6190,89							0,84	1,63
148000	111000	74000	37000	6362,85							0,87	1,71
152000	114000	76000	38000	6534,82							0,89	1,79
156000	117000	78000	39000	6706,79							0,91	1,87
160000	120000	80000	40000	6878,76							0,94	1,96
164000	123000	82000	41000	7050,73							0,96	2,05
168000	126000	84000	42000	7222,70							0,98	2,14
172000	129000	86000	43000	7394,67							1,01	2,23
176000	132000	88000	44000	7566,64							1,03	2,33
180000	135000	90000	45000	7738,61							1,05	2,42
184000	138000	92000	46000	7910,58							1,08	2,52
188000	141000	94000	47000	8082,55							1,10	2,62
192000	144000	96000	48000	8254,51							1,12	2,72
196000	147000	98000	49000	8426,48							1,15	2,82
200000	150000	100000	50000	8598,45							1,17	2,92

Richtwerte und Montagezeiten

In der folgenden Tabelle sind die Richtwerte für die Montage der Rohre und Druckhülsenverbinder in laufenden Metern, fertig verlegt, einschließlich der Befestigung für die Schlitz- und Vorwandinstallation in Ein- und Mehrfamilienhäusern, in Gruppenminuten dargestellt.

TECEflex Ø in mm	Montagezeit für Ifd. M. fertig verlegt, inkl. Befestigung in Gruppenminuten
14	5–9
16	5–9
20	6–10
25	7–11
32	8–12
40	14–16
50	16–18
63	18–20

Hinweis: Mehrleistungen gem. VOB bzw. zusätzlicher Zeitaufwand – z. B. für Schlitzen, Einrichten der Baustelle, 100% Dämmung und Druckprobe – sind nicht enthalten. Die angegebenen Gruppenminuten verstehen sich für Monteure mit Systemerfahrung.

Spülen von Trinkwasseranlagen

In der DIN 1988 Teil 200 wird ein aufwendiges Spülen mit einem Luft-Wasser-Gemisch beschrieben. Dieses Spülverfahren ist für metallische Rohrsysteme vorgeschrieben, da sich in einer Metallinstallation durch die Verarbeitung noch Späne, Rost oder Flussmittel befinden können. Diese Stoffe können in metallischen Rohrleitungen zu hygienischen Beieinträchtigungen oder zu Korrosion der Rohre führen. Sofern während der Montage sichergestellt wird, dass keine Verunreinigungen in die Rohinstallation eingebracht werden, reicht ein gründliches Spülen der TECEflex Rohrleitungen aus, entsprechend dem ZVSHK-Merkblatt "Spülen, Desinfizieren und Inbetriebnahme von Trinkwasserinstallationen".

Druckprüfung von Trinkwasseranlagen

Die erfolgreiche Durchführung und Dokumentation einer Druckprüfung ist Voraussetzung für eventuelle Ansprüche im Rahmen der TECE Gewährleistung.

Für Trinkwasserinstallationen ist eine Druckprüfung nach DIN EN 806-4 durchzuführen. Die Anforderungen an die Druckprüfung aus der DIN EN 806-4 werden durch die VDI/DVGW 6023 und durch den ZVSHK Merkblatt "Dichtheitsprüfungen von Trinkwasser-Installationen mit Druckprüfungen mit Druckluft, Inertgas oder Wasser" ergänzt. Vor der Druckprüfung muss sichergestellt sein, dass alle Komponenten der Installation frei zugänglich und sicht-

bar sind, um beispielsweise fehlerhaft montierte Fittings lokalisieren zu können. Soll nach einer Druckprüfung das Rohrleitungssystem im unbefüllten Zustand verbleiben (z. B. weil ein regelmäßiger Wasseraustausch nach spätestens 72 Stunden nicht gewährleistet werden kann), so empfiehlt sich die Durchführung einer Druckprüfung mit Druckluft bzw. inerten Gasen.

Unabhängig vom Prüfmedium können Aussagen über die Dichtheit der Anlage nicht alleine anhand des Prüfdruckverlaufs abgeleitet werden. Zusätzlich muss die Dichtheit der Anlage durch eine Sichtkontrolle an unverdeckten Leitungen überprüft werden. Dazu sollte zur Ortung von Feinstleckagen eine Sichtkontrolle, gegebenenfalls unterstützt durch Lecksuchmittel, durchgeführt werden.

Dichtheitsprüfung mit ölfreier Druckluft oder Inertgas

Vor der Dichtheitsprüfung muss eine Sichtprobe der Rohrverbindungen durchgeführt werden. Bauteile in der Leitungsanlage müssen für die Prüfdrücke geeignet sein oder vor der Leitungsprüfung ausgebaut, durch ein geeignetes Rohrstück ersetzt oder an den Rohrenden in Leitungsabschnitte getrennt geprüft werden.

Nach Aufbringen des Prüfdrucks von 150 mbar (150 hPa) muss die Prüfzeit bis 100 Liter Leitungsvolumen mindestens 120 Minuten betragen. Je weitere 100 Liter Leitungsvolumen muss die Prüfzeit um 20 Minuten erhöht werden.

Die Prüfung beginnt nach Erreichen des Prüfdrucks unter Berücksichtigung einer entsprechenen Wartezeit zur Stabilisierung von Medien und Umgebungstemperatur. Die Dichtheit wird durch Übereinstimmung von Anfangs- und Endprüfdrücken – bis auf die normalen Schwankungen durch die Medientemperatur und des Druckes am Manometer – festgestellt.

Das verwendete Manometer muss für die zu messenden Drücke eine entsprechende Genauigkeit von 1 mbar (1 hPa) im Anzeigebereich haben. Hierzu können die von der TRGI-Prüfung bekannten U-Rohr-Manometer bzw. die Standrohre angewendet werden.

Belastungsprüfung

Der Zweck dieser Prüfung ist es, Fehler zu finden, die zu einem Bruch oder Auseinandergleiten einer Verbindung der genannten Leitungsanlage unter normalen Betriebsbedingungen führen könnten. Die Festigkeitsprüfung wird kombiniert mit einer Sichtprüfung aller Rohrverbindungen durchgeführt. Die Püfung besteht darin, die zu prüfende Leitungsanlage mit einem Medium unter Druck (maximal 3 bar) zu befüllen.

Die Belastungsprüfung mit erhöhtem Druck soll bei

- Nennweiten bis DN 50 maximal 3 bar und bei
- Nennweiten über DN 50 (bis DN 100) maximal 1 bar betragen.

Planung und Auslegung

Nach Aufbringen des Prüfdrucks beträgt die Prüfzeit min. 10 Minuten.

Während der Prüfzeit muss der Manometerstand konstant bleiben. Bei TECEflex Installationen ist vor Beginn der Prüfzeit der Beharrungszustand abzuwarten. Bei anderen Werkstoffen ist die erforderliche Temperaturkonstanz im Leitungssystem vor Beginn der Prüfung zu erreichen. Das verwendete Manometer muss eine Genauigkeit von 100 mbar (100 hPa) im Anzeigebereich haben.

Lecksuchmittel

Zur Detektion von Undichtigkeiten werden bei trockenen Druckprüfungen häufig schäumende Lecksuchmittel verwendet. Diese Produke können Inhaltsstoffe enthalten, welche die Werkstoffe des TECEflex Systems schädigen können. Daher sind nur von TECE freigegebene Lecksuchmittel zu verwenden.

Verwendbare Lecksuchmittel:

- · Weicon 11654400 Lecksuch-Spray frostsicher
- OKS 2811 Lecksucher, frostsicher, Spray
- · Helling Proof Check Plus

Nach der Prufung sind die Fitings von den Resten des Lecksuchmittels zu säubern.

Vorbereitung der Dichtheitsprüfung mit Wasser

Vor der Dichtheitsprüfung mit Wasser ist die Sichtprobe aller Rohrverbindungen vorzunehmen. Das Druckmessgerät ist am tiefsten Punkt der zu prüfenden Installation anzuschließen. Es dürfen nur Messgeräte eingesetzt werden, die eine maximale Messunsicherheit von 0,1 bar (100 hPa) garantieren. Die Installation ist mit gefiltertem Trinkwasser (Partikelgröße ≤ 150 µm) aufzufüllen, zu entlüften und vor Einfrieren zu schützen. Absperrorgane vor und hinter Wärmeerzeugern und Speicher sind zu schließen, damit der Prüfdruck von der übrigen Anlage ferngehalten wird. Wenn zwischen Umgebungs- und Wassertemperatur erhebliche Differenzen (> 10 K) bestehen, muss nachdem der Systemprüfdruck aufgebracht wurde 30 min gewartet werden um einen Temperaturausgleich zu ermöglichen. Der Druck muss mindestens für 10 min aufrechterhalten werden. Es dürfen weder ein Druckabfall noch ein sichtbarer Hinweis auf eine Undichtheit auftreten.

Durchführung der Dichtheitsprüfung

Das Rohrleitungssystem wird zunächst mit einem Prüfdruck, der das 1,1-fache des Betriebsdrucks betragen muss (bezogen auf den tiefsten Punkt der Anlage), beaufschlagt. Der Betriebsdruck nach DIN EN 806-2 beträgt 10 bar (1 MPa). Demnach ist ein Prüfdruck von 11 bar (1,1 MPa) erforderlich. Danach ist eine Inspektion des geprüften Rohrleitungsabschnittes durchzuführen um

eventuelle Undichtigkeiten feststellen zu können. Nach 30 Minuten Prüfzeit ist der Druck durch Ablassen von Wasser auf 5,5 bar (0,55 MPa), was dem 0,5-fachen Anfangsprüfdruck entspricht, zu reduzieren. Die Prüfzeit bei diesem Druck beträgt 120 Minuten. Während dieser Prüfzeit darf keine Undicht erkennbar sein. Der Prüfdruck am Manometer muss konstant bleiben ($\Delta p = 0$). Falls während der Prüfzeit ein Druckabfall auftritt liegt eine Undichtigkeit im System vor. Der Druck ist aufrecht zu erhalten und die undichte Stelle festzustellen. Der Mangel ist zu beheben und anschließend ist die Dichtheitsprüfung zu wiederholen.

Bitte beachten:

Aus hygienischen Gründen empfiehlt TECE, dass eine Dichtheitsprüfung mit ölfreier Druckluft bzw. Inertgas einer Dichtheitsprüfung mit Trinkwasser vorzuzuiehen ist.

Heizungsanlagen

Eine Heizungsinstallation muss vor der Inbetriebnahme gründlich gespült werden, um metallische Reste oder Flussmittel zu entfernen. Die Dichtheitsprüfung erfolgt analog zur Dichtheitsprüfung der Trinkwasserinstallationen. Der Prüfdruck beträgt allerdings das 1,3 fache des Betriebsdruckes.

Dokumentation

Die ATV DIN 18381 (VOB Teil C: Allgemeine technische Vertragsbedingungen für Bauleistungen) sieht die Ausfertigung und Übergabe eines Protokolls über die durchgeführte Dichtheitsprüfung an den Auftraggeber als notwendigen Nachweis an.

Druckprüfprotokoll für Trinkwasserinstallationen – nach DIN EN 806-4, ergänzt durch VDI/DVGW 6023 und ZVSHK Merkblatt (Dichtheitsprüfungen von Trinkwasser-Installation mit Druckluft, Inertgas und Wasser) – mit dem Prüfmedium ölfreier Druckluft oder Inertgas

Bauvorhaben:			
Auftraggeber:			
Auftragnehmer/Installateur:			
Werkstoff des Rohrleitungssystems:			
Verbindungsart:			
Anlagendruck: k	par		
Umgebungstemperatur°	C Temperatur Prüfmedi	ium	°C
Prüfmedium: 🗖 ölfreie Druckluft 💢 Stickstoff	☐ Kohlendioxid	□	
Die Trinkwasseranlage wurde geprüft als:	☐ Gesamtanlage	☐ in	Teilabschnitten
Dichtheitsprüfung			
Prüfdruck:	150 mbar		
Prüfzeit bis 100 Liter Leitungsvolumen: (je weitere 100 Liter ist die Prüfzeit um 20 Minuten zu e	mind. 120 Minuten erhöhen)		
Leitungsvolumen:	Liter		
Prüfzeit:	Minuten		
Temperaturabgleich und Beharrungszustand wird abge	ewartet, erst danach beg	innt die Prüfze	it.
☐ Während der Prüfzeit wurde kein Druckabfall festge	stellt.		
Festigkeitsprüfung mit erhöhtem Druck			
Prüfdruck bis einschließlich DN 50:	3 bar		
Prüfdruck über DN 50 bis DN 100:	1 bar		
Prüfzeit bis 100 Liter Leitungsvolumen:	mind. 10 Minuten		
Prüfzeit:	Minuten		
Temperaturabgleich und Beharrungszustand wird abge	wartet, erst danach beg	innt die Prüfze	it.
☐ W ährend der Prüfzeit wurde kein Druckabfall festge	stellt.		
☐ Das Rohrleitungssystem ist dicht.			
Ort	Datum		
Autraggeber (Unterschrift)	Auftragnehmer/I		

Planung und Auslegung

Druckprüfprotokoll für Trinkwasserinstallationen – nach DIN EN 806-4, ergänzt durch VDI/DVGW 6023 und ZVSHK Merkblatt (Dichtheitsprüfungen von Trinkwasser-Installation mit Druckluft, Inertgas und Wasser) – mit dem Prüfmedium Trinkwasser

Bauvorhaben:	
Auftraggeber:	
Installateur:	
Dimensionsbereich von mm bis mm	Leitungslänge ca m
Wassertemperatur:°C	Umgebungstemperatur:°C
Die Temperaturdifferenz zwischen Wassertemperatur und	Umgebungstemperatur darf nicht größer als 10 K betragen!
Dichtheitsprüfung, Teil 1	
Prüfdauer: 30 Minuten	Prüfdruck: 11 bar (1,1 facher Betriebsdruck)
Druck nach 30 Minuten	bar
Ergebnis	
Dichtheitsprüfung, Teil 2	
Prüfdauer: 120 Minuten	Prüfdruck: 5,5 bar (0,5 facher Prüfdruck, Teil 1)
Druck nach 120 Minuten	bar
Ergebnis:	
Beginn der Prüfung (Datum, Uhrzeit)	 Ende der Prüfung Prüfung (Datum, Uhrzeit)
Die VDI/DVGW 6023 schreibt vor, dass die Anlage nach d 72 Stunden in Betrieb gehen muss.	er Dichtheitsprüfung mit Wasser innerhalb der nächsten
Inbetriebnahme der Anlage (Datum, Uhrzeit)	
Ort	 Datum
Autraggeber (Unterschrift)	Auftragnehmer/Installateur (Stempel/Unterschrift)

Druckprüfprotokoll für Heizungsanlagen – nach DIN 18380 (VOB)

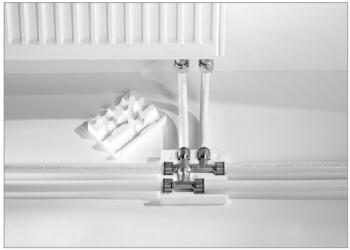
Bauvorhaben:	
Auftraggeber:	
Auftragnehmer/Installateur:	
Dimensionsbereich von mm bis mm Wassertemperatur: °C	Leitungslänge ca m Umgebungstemperatur: °C
Vorprüfung	
Prüfdauer: 60 Minuten	Prüfdruck: 1,3 × Betriebsdruck in bar
Druck nach 30 Minuten	bar
Druck nach 60 Minuten	bar
Druckverlust der letzten 30 Minuten	bar (maximal 0,6 bar)
Ergebnis der Vorprüfung	
Hauptprüfung	Prüfdruck der Vorprüfung übernehmen
Prüfdauer: 120 Minuten	max. erlaubter Druckabfall: 0,2 bar
Druck zu Prüfbeginn	bar
Druck nach 120 Minuten	bar
Druckabfall während der Prüfdauer	bar (maximal 0,2 mbar)
Ergebnis der Hauptprüfung:	
Beginn der Prüfung	Ende der Prüfung
Ort	Datum
Auftraggeber/Vertreter (Unterschrift)	Auftragnehmer/Installateur (Stempel/Unterschrift)

Planung und Auslegung

Inbetriebnahme- und Einweisungsprotokoll für die Trinkwasseranlage (Seite 1 von 2)

Bauv	orhaben:			
Auftra	aggeber/Vertreter:			
Auftra	agnehmer/Vertreter:			
	wesenheit der oben erwähnten Personen wurde d liese in Betrieb genommen:	iese in den Geb	rauch der folgenden Anlagenteile eingewiese	en
Nr.	Anlagenteil, Apparat	Abnahme vorgenommen	Bemerkung n.	ı. v.
1	Hausanschluss			
2	Hauptabsperrarmatur		[<u></u>
3	Rückflussverhinderer			
4	Rohrtrenner		(7
5	Filter		(_
6	Druckminderanlage		[_
7	Verteilerleitungen		[<u></u>
8	Steigleitungen/Absperrarmaturen		[_
9	Stockwerksleitungen/Absperrarmaturen		[_
10	Steigleitungs-Rohrbelüfter/Tropfwasserleitung		[
11	Sammelsicherungen/Tropfwasserleitung		[
12	Entnahmestellen mit Einzelsicherung			_
13	Warmwasserbereitung/Trinkwassererwärmer			_
14	Sicherheitsventile/Abblaseleitungen		[
15	Zirkulationsleitung/Zirkulationspumpe			
16	Dosieranlage			
17	Enthärtungsanlage			
18	Druckerhöhungsanlage		[[
19	Feuerlösch- und Brandschutzanlagen			
20	Schwimmbadeinlauf			
21	Entnahmearmaturen			
22	Verbrauchseinrichtungen			
23	Trinkwasserbehälter			
24				
25				_
26				
27				

nerkungen des Auftraggebers: nerkungen des Auftragnehmers: für den Betrieb der Anlage und Apparate ist erfolg	
ür den Betrieb der Anlage und Apparate ist erfolg	
gs- und Wartungsunterlagen gemäß vorab genar sen, dass trotz sorgfältiger Planung und Ausführu	gt, die erforderlichen Betriebsunterlagen und vorhan- inter Aufstellung wurden ausgehändigt. Es wurde ng der Installation nur dann Trinkwasser von einwand- enn regelmäßig ein vollständiger Wasseraustausch in
Maßnahmen vor der Ahwesenheit	Maßnahmen bei der Rückkehr
Wohnungen: Schließen der Stockwerksabsperrarmaturen Einfamilienhäuser:	Nach Öffnen der Absperrarmatur abgestandenes Wasser an allen Entnahmestellen 5 min abfließen lassen (voll geöffnet)
Wohnungen: Schließen der Stockwerksabsperrarmaturen Einfamilienhäuser:	Es wird empfohlen, eine Spülung der Hau- sinstallation zu veranlassen
·	
Trennen der Anschlussleitung von der Versorgur tung	ngslei- Wiederanschluss durch Wasserversor- gungsunternehmen oder Fachinstallateur
Da	tum ftragnehmer/Installateur
	gs- und Wartungsunterlagen gemäß vorab genansen, dass trotz sorgfältiger Planung und Ausführunheit an allen Entnahmestellen vorliegen kann, weder Installation gewährleistet ist. Maßnahmen bei längerer Abwesenheit Wohnungen: Schließen der Stockwerksabsperrarmaturen Einfamilienhäuser: Schließen der Absperrarmatur hinter dem Wasse Wohnungen: Schließen der Stockwerksabsperrarmaturen Einfamilienhäuser: Schließen der Absperrarmatur hinter dem Wasse Schließen der Absperrarmatur hinter dem Wasse Schließen der Absperrarmatur hinter dem Wasse Schließung der Hauptabsperrarmatur (Hausansc veranlassen. Leitungen vollständig entleeren Trennen der Anschlussleitung von der Versorgur tung


Heizkörperanbindung

Heizkörperanbindung

Das TECEflex System bietet ein umfangreiches Fittingsortiment zur rationellen Heizkörperanbindung für die gängigsten Baustellensituationen an.

Kreuzungsfitting

Der Kreuzungsfitting ermöglicht den Abzweig von Vor- und Rücklaufleitung von zwei parallel laufenden Hauptleitungen. Die Aufbauhöhe des Fittings mit Isolierbox beträgt lediglich 35 mm.

Heizkörperanschluss mit Kreuzungsfitting

Durch den Einsatz eines Kreuzungsfittings wird nicht nur Montagezeit gespart, sondern auch das Risiko der Beschädigung von gekreuzten Rohren durch Schiebkarren, Platttreten oder Ähnliches vermieden.

Kreuzungsfitting (Best.-Nr. 718501/ ...02/...03)

Schutzbox (Best.-Nr. 718020)

Anschluss aus dem Boden

Heizkörper können mit dem TECEflex Verbundrohr direkt aus dem Estrich angeschlossen werden. Um "Knackgeräusche" zu vermeiden, muss die Längenausdehnung des Rohres kompensiert werden. Daher sind die Rohre mit einem mindestens 6 mm starken Dämmschlauch zu versehen.

Außerdem wird empfohlen, eine Schutzmanschette um den sichtbaren Teil des Rohres anzubringen. Verletzungen der Rohre, zum Beispiel durch Staubsaugen, werden so vermieden.

Heizkörperanbindung mit Montage-T-Stücken/-winkeln

Für gehobenere Ansprüche bietet das TECEflex Sortiment Montage-T-Stücke aus vernickeltem Kupfer an. Durch ihre gekröpfte Form kann die Anbindung eines Heizkörpers aus parallel laufenden Vor- und Rücklaufleitungen erstellt werden.

Heizkörperanschluss mit HK-Montage-T-Stück

Die vernickelten Kupferrohre werden mittels Quetschverschraubung an den Hahnblock des Heizkörpers angebunden.

Wenn die Vor- und Rücklaufleitungen nicht unter dem Heizkörper entlanglaufen, können alternativ die HK-Montagewinkel aus vernickeltem Kupfer verwendet werden.

Heizkörperanschluss mit HK-Montagewinkel

Anschluss aus der Wand

Die besonderen Biegeeigenschaften des TECEflex Verbundrohres ermöglichen den Heizkörperanschluss direkt aus der Wand. Der Mauerschlitz ist so auszuführen, dass die minimalen Biegeradien des TECEflex Rohres eingehalten werden können.

Heizkörperanschluss aus der Wand

Heizkörperanbindung mit der HK-Montagegarnitur für Kompaktheizkörper aus der Wand

Die HK-Montagegarnitur ist mit stabilen Befestigungslaschen zur sicheren Fixierung im Mauerschlitz ausgerüstet. Die TECEflex Verbindungstechnik erlaubt es, die Rohre direkt im Mauerschlitz anzubinden.

Heizkörperanschluss mit HK-Montagegarnitur – bereit zum Abdrücken

Heizkörperanschluss mit HK-Montagegarnitur – an den Hahnblock angeschlossen Durch die Verbindung zwischen Vor- und Rücklauf kann die Heizungsanlage ohne Baustopfen abgedrückt werden. Zur Montage des Heizkörpers wird das U-Rohr passend abgelängt und mittels Quetschverschraubung an den Hahnblock angeschossen.

Alternativ steht eine HK-Montagegarnitur aus dem Fußboden zur Verfügung. Sie ist ebenfalls mit einem U-Rohr ausgestattet und ermöglicht ein baustopfenfreies Abdrücken. TECEflex HK-Montagegarnitur Dim. 16 × 15 mm CU

Anschluss aus der Wand mit Montagemodul

Für die optimale Anbindung aus der Wand kann das Heizkörper-Montagemodul mit vorgedämmten Rohren eingesetzt werden. Eine weitere Besonderheit sind die besonders engen Radien des TECEflex Rohres.


Heizkörperanschluss mit Montagemodul – an den Hahnblock angeschlossen

Heizkörperanbindung

Heizkörperanschluss aus einer Sockelleiste

Das TECEflex Sortiment bietet für den Anschluss aus einer Sockelleiste eine Sockelleisten-Anschlussgarnitur mit Anschlussbögen oder Winkelabsperrungen an. Im Sanierungsfall können somit Heizkörper ohne Stemmaufwand angeschlossen werden.

Für Sockelleisten-Systeme dürfen nur TECEflex Verbundrohre in Verbindung mit Messingfittings eingesetzt werden. TECE empfiehlt den Einsatz von Sockelleisten der Firma HZ.

Heizkörperanschluss aus der Sockelleiste

Druckluftinstallation

Auslegungsgrößen für den Druckverlust Ap

Druckluftinstallationen, die einen Höchstdruck p_{max} von 8 bar oder mehr haben, sollten einen Gesamtdruckverlust durch das Rohrnetz bis zum Verbraucher von $\Delta P = 0,1$ bar nicht überschreiten. TECE empfiehlt für einzelne Rohrleitungstypen folgende Werte:

• Hauptleitung $\Delta p \le 0.04$ bar • Verteilleitung $\Delta p \le 0.04$ bar • Anschlussleitung $\Delta p \le 0.03$ bar

Für Rohrleitungsnetze mit Höchstdrücken ≤ 8 bar gilt: Druckverlust Rohrleitungsnetz $\Delta p \leq 1,5$ bar von p_{max} .

Öle

Je nach Verdichtertyp befindet sich Öl in der Druckluft. Die Druckluft wird nach dem maximal zulässigen Ölgehalt klassifiziert. Der Ölgehalt kann je nach Klasse von 0,01 bis 25 mg/m³ Druckluft schwanken. Das TECEflex System ist für jede Verdichterölqualität geeignet.

Druckprüfung

TECE empfiehlt, vor der Inbetriebnahme eines Druckluftnetzes eine Druckprüfung in Anlehnung an die technischen Regeln zur Druckbehälterverordnung (TRB 522) vorzunehmen. Die Prüfung ist in zwei Teile unterteilt: Dichtheitsprobe und Festigkeitsprüfung.

Vorkehrungen zum Schutz der Arbeitsbeteiligten sind zu treffen. Während der Prüfung soll nur das dafür notwendige Arbeitspersonal vor Ort sein.

Dichtheitsprobe

Es ist darauf zu achten, dass vor Durchführung der Dichtheitsprobe alle offenen Leitungsstellen mit Stopfen, Kappen oder ähnlichem verschlossen sind. Die Dichtheitsprobe soll das Leitungsnetz prüfen. Armaturen, Werkzeuge und Druckbehälter sind vom Netz zu trennen.

Anforderungen:

- Prüfdruck 110 mbar
- Prüfzeit bis 100 l Leitungsvolumen mindestens 30 Minuten
- Je weitere 100 I Leitungsvolumen ist die Prüfzeit um 10 Minuten zu erhöhen. Um temperaturbedingte Druckschwankungen auszugleichen, beginnt die Prüfzeit ca.
 15 Minuten nach Aufbringen des Prüfdrucks. Die Dichtheitsprobe gilt als bestanden, wenn nach Ablauf der Prüfzeit Anfangs- und Enddruck übereinstimmen.

Festigkeitsprüfung

Wurde die Dichtheitsprobe mit Erfolg durchgeführt, kann direkt im Anschluss die Festigkeitsprüfung erfolgen. Hierzu wird der Prüfdruck auf das 1,1 fache des zulässigen Betriebsdruckes der Anlage erhöht.

In den ersten 30 Minuten nach Aufbringen des Prüfdrukkes kann er zweimal wiederhergestellt werden. Danach muss er 30 Minuten lang gehalten werden. Der Druckabfall in dieser Zeit darf 0,1 mbar nicht überschreiten.

Planung einer Druckluftinstallation

Druckluftleitungen sollten immer möglichst geradlinig verlegt werden. Um so weniger Fittings verwendet werden, um so geringer sind auch die Druckverluste. Bei der Rohrverlegung sind daher lange, von Hand gebogene Umlenkungen den Winkelkupplungen vorzuziehen.

Größere Druckluftnetze sollten möglichst in mehrere Abschnitte unterteilt werden. Die einzelnen Abschnitte sollten jeweils mit einem eigenen Absperrventil ausgerüstet sein. Dadurch besteht jederzeit die Möglichkeit, einzelne Abschnitte des Leitungsnetzes außer Betrieb zu nehmen, um Reparatur- oder Erweiterungsarbeiten durchführen zu können.

Bei größeren Druckluftnetzen kann es durchaus sinnvoll sein, eine zweite Kompressorstation zu integrieren. Dadurch kann das Rohrnetz von einer zweiten Stelle aus mitversorgt werden. Demzufolge hat die Druckluft kürzere Strecken zurückzulegen und der Druckverlust verringert sich.

Rohrleitungsnetz ohne Drucklufttrocknung

Wenn in Druckluftanlagen auf eine Trocknung verzichtet wird, fällt Kondensat in Form von Wassertröpfchen aus. Um Schäden an den Druckluftverbrauchern zu vermeiden, sind in diesem Fall verschiedene Punkte zu beachten:

- Vermeidung von Abkühlungen.
 Die Rohrführung ist so zu wählen, dass die Druckluft auf den Weg zum Verbraucher nicht abgekühlt wird. Im Idealfall sollte sich die Druckluft im Rohrnetz allmählich erwärmen. Dadurch sinkt die relative Feuchte der Luft und ein Kondensatausfall wird vermieden.
- Die Druckluftleitungen müssen mit einem Gefälle von ca. 1,5 % bis 2 % in Strömungsrichtung verlegt werden, damit sich das Kondensat an den tiefsten Stellen des Rohrnetzes sammeln kann.
- Hauptleitungen, die direkt vom Druckbehälter abgehen, sollten senkrecht nach oben ansteigen. Das anfallende Kondensat läuft dann in den Druckbehälter zurück.

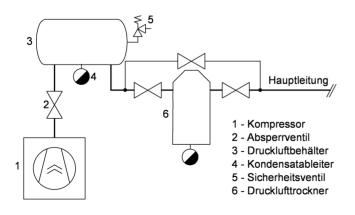
Druckluftinstallation

- An den tiefsten Punkten des Rohrnetzes müssen Kondensatableiter installiert werden.
- Anschlussleitungen müssen nach oben in Strömungsrichtung abzweigen.
- Es sollte immer eine Wartungseinheit mit Filter, Wasserabscheider und Druckminderer installiert werden. Je nach Anwendungsfall ist noch ein Druckluftöler nötig.

Rohrleitungsnetz mit trockener Druckluft

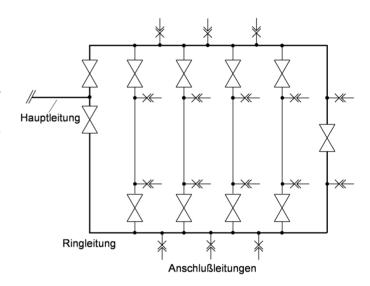
Ist in einem Druckluftnetz ein Drucklufttrockener installiert, kann auf einen Großteil der Maßnahmen verzichtet werden, die sich mit der Kondensatbehandlung beschäftigen. Rohrleitungen dürfen dann auch ohne Gefälle verlegt werden.

Kondensatleiter sind nur noch an dem Filter im Druckluftbehälter und dem Drucklufttrockner nötig. Anschlussleitungen können senkrecht nach unten angeschlossen werden. Eine Installation eines Rohrnetzes für trockene Druckluft ist wesentlich preiswerter. In der Regel rechnet sich schon bei kleineren Anlagen die Anschaffung eines Drucklufttrockners.

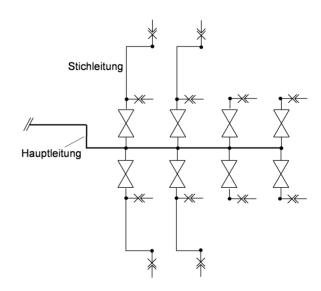

Druckluftleitungen

Eine Druckluftleitung wird in der Regel in drei Leitungstypen aufgeteilt:

- · Hauptleitung
- Verteilleitung
- Anschlussleitung


Die Hauptleitung

Die Hauptleitung verbindet die Verdichter mit den Verteilleitungen. In der Regel werden die Druckluftaufbereitung und der Druckluftbehälter an die Hauptleitung angebunden. Diese transportiert die gesamte Liefermenge des Kompressors. Der Druckabfall in der Hauptleitung sollte 0,04 bar nicht überschreiten.


Verteilleitung als Ringleitung

Verteilleitungen sollten nach Möglichkeit immer als Ringleitung ausgeführt sein. Die Wirtschaftlichkeit des Systems wird dadurch wesentlich erhöht. Eine Ringleitung bildet einen geschlossenen Verteilungsring. Dadurch ist es möglich, einzelne Abschnitte des Netzes abzusperren, ohne dabei die Druckluftversorgung der anderen Bereiche zu unterbrechen. Gegenüber Stichverteilleitungen muss die Druckluft hierbei einen kürzeren Weg zurücklegen. Bei der Dimensionierung der Ringleitung kann daher mit der halben strömungstechnischen Rohrlänge und dem halben Volumenstrom gerechnet werden.

Die Verteilleitung als Stichleitung

Die Stichleitungen verbinden die Hauptleitung mit den Anschlussleitungen. Stichleitungen werden oft verwendet, um weiter abseits stehende Verbraucher zu versorgen. Oft werden Stichleitungen realisiert, um weniger Rohrmaterial zu verarbeiten. Meist wird dieser Vorteil aber wieder aufgebraucht, da sie größer dimensioniert werden müssen als bei einer Ringleitung. Der Druckverlust von Stichleitungen darf 0,3 mbar nicht überschreiten.

Anschlussleitungen

Anschlussleitungen verbinden die Verbraucher mit der Versorgungsleitung. In der Regel werden die Druckluftverbraucher mit unterschiedlichen Drücken betrieben. Daher wird meist am Ende einer Anschlussleitung ein Druckregler installiert. Anschlussleitungen werden an die Verteilleitung immer von oben angebunden und dann nach unten geführt, da sich sonst größere Mengen Kondenswasser oder Verdichteröl in der Anschlussleitung sammeln. TECE empfiehlt für den industriellen Bereich. Anschlussleitungen immer in der Dimension 32 auszuführen. Diese Dimension hat gegenüber kleineren Abmessungen nur geringe Mehrkosten und gewährleistet in der Regel immer eine sichere Druckluftversorgung. Bei einer Anschlusslänge bis 10 Meter können Verbraucher mit einem Druckluftbedarf von bis zu 1.800 Liter pro Minute sicher angeschlossen werden. Der Druckabfall in einer Anschlussleitung sollte 0,3 mbar nicht überschreiten.

Sammelleitung

Wenn mehrere Verdichter an einer Leitung angeschlossen sind, wird von einer Sammelleitung gesprochen. Bei diesen Leitungen sind folgende Punkte zu beachten:

- Sammelleitung mit Gefälle:
 Die Sammelleitung muss mit ca. 1,5 % bis 2 % Gefälle in
 Strömungsrichtung verlegt werden. Die Anschlussleitung
 muss von oben an die Sammelleitung angeschlossen
 werden.
- Bei längeren Steigleitungen zur Sammelleitung ist ein Wasserabscheider mit automatischer Entwässerung dem Kompressor nachzuschalten, um das zurücklaufende Kondensat aufzufangen.

Berechnungsgrundlagen für Druckluftinstallationen

Die korrekte Dimensionierung und Auslegung einer Druckluftinstallation liegt im wirtschaftlichen Interesse eines jeden Betreibers. Zu klein dimensionierte Rohrleitungen verursachen hohe Druckverluste im Rohrnetz. Diese müssen durch eine höhere Verdichtung der Luft wieder ausgeglichen werden, um die benötigte Leistung bei den Verbrauchern gewährleisten zu können. Dieses würde allerdings zu unverhältnismäßig hohen Kosten für den Betreiber der Anlage führen.

Folgende Parameter beeinflussen den Rohrinnendurchmesser d.:

Nennlänge (in m)

Die Rohrlänge ist in jedem Fall genau zu messen. Für Armaturen und Formstücke ist die äquivalente Rohrlänge einzusetzen – es kann dieselbe äquivalente Rohrlänge wie bei der Gasinstallation verwendet werden – und zu der gemessenen Rohrlänge zu addieren.

Überschlägig kann die gemessene Rohrlänge auch mit 1,6 (+ 60 %) multipliziert werden. Das Ergebnis ergibt die zur Berechnung des Innendurchmessers anzunehmende Gesamtrohrlänge:

$$L_{gesamt} = L_{gerade} \cdot 1,6$$

Dieser Multiplikator ist der überschlägige Anteil an Einzelwiderständen von Rohrkrümmern, Fittings und Armaturen.

Volumenstrom (V in I/s)

Bei der Ermittlung des Rohrinnendurchmessers d_i sollte vom größtmöglichen Luftdurchsatz ausgegangen werden, da sich bei maximalem Druckluftbedarf ein erhöhter Druckabfall besonders stark auswirkt.

Betriebs- bzw. Überdruck (in bar)

Für die Ermittlung des Rohrinnendurchmessers d_i ist vom Kompressorausschaltdruck p_{max} auszugehen, da beim höchsten Druck auch der Druckabfall Δp am höchsten ist.

Dimensionierung

Für die Ermittlung des benötigten Rohrinnendurchmessers gibt es verschiedene Ansätze. Eine relativ einfache Möglichkeit ist die Berechnung mit Hilfe der folgenden Näherungsformel.

$$d_{i} = \sqrt[5]{\frac{1,6 \cdot 10^{3} \cdot \dot{V}^{1,85} \cdot L}{10^{10} \cdot \Delta p \cdot p_{max}}}$$

d, = Innendurchmesser der Rohrleitung [m]

 \dot{V} = Gesamtvolumenstrom [m³/s]

L = Strömungstechnische Rohrlänge [m]

 Δp = angestrebter Druckabfall [bar]

 p_{max} = Kompressorausschaltdruck [barabs]

Beispiel 1

Der Rohrinnendurchmesser d_i einer Druckluftinstallation in einer Werkstatt soll anhand der oben angegebenen Näherungsformel berechnet werden. Die Verteilungsleitung ist als Stichleitung ausgeführt. Der angestrebte Gesamtdruckverlust liegt bei einem Δp von 0,08 bar. Der maximale Betriebsdruck (Kompressorausschaltdruck) liegt bei 8 barabs. Die gemessene Rohrlänge beträgt 75 Meter, die Anzahl der Fittings und Formstücke ist unbekannt. Durch diese Rohrleitung fließt ein Volumenstrom von 90 m³/h.

Druckluftinstallation

Als Erstes wird nun die strömungstechnische Gesamtrohrlänge wie folgt berechnet:

$$L_{gesamt} = 75 \text{ m} \cdot 1,6$$
$$= 120 \text{ m}$$

geg: L =120 Meter
$$\dot{V}$$
 = 90 m³/h => 0,025 m³/s Δp = 0,08 bar p_{max} = 8 bar

$$d_i = \sqrt[5]{\frac{1,6 \cdot 10^3 \cdot 0,025^{1,85} \cdot 120}{10^{10} \cdot 0,08 \cdot 8}}$$

Gewählte Rohrdimension: TECEflex Verbundrohr Dim. 40 (40 x 4 mm)

Beispiel 2

Für diese Beispielrechnung nehmen wir dieselbe Werkstatt wie im ersten Beispiel. Der Unterschied besteht allerdings darin, dass die Verteilungsleitung als Ringleitung ausgeführt wird. Bei einer Ringleitung sind kleinere Rohrdurchmesser möglich, die Berechnung kann in diesem Fall nach folgender angepassten Näherungsformel ausgeführt werden:

$$d_{i} = \sqrt[5]{\frac{1,6 \cdot 10^{3} \cdot \dot{V}^{1,85} \cdot L}{10^{10} \cdot \Delta p \cdot p_{max} \cdot 7,21}}$$

Die Konstante 7,21 berücksichtigt die halbe strömungstechnische Rohrlänge und den halben Volumenstrom.

Daraus folgt dann:

$$d_{i} = \sqrt[5]{\frac{1,6 \cdot 10^{3} \cdot 0,025^{1,85} \cdot 120}{10^{10} \cdot 0,08 \cdot 8 \cdot 7,21}}$$
=> d_i = 0,021 m = 21 mm

Gewählte Rohrdimension: TECEflex Verbundrohr Dim. 32 (32 x 4 mm)

Die Berechnung zeigt, dass durch die Verwendung einer Ringleitung als Verteilungsleitung die Rohrdimension in den meisten Fällen um mindestens eine Dimension verringert werden kann.

Gasinstallation

Für die Planung und Auslegung der TECEflex Gasinstallation sind die Vorgaben der TRGI 2008 zu beachten.

Zertifizierung

TECEflex ist für die Gasinneninstallation zertifiziert: DVGW DG8505BP0418.

Das Zertifikat kann unter www.tece.de heruntergeladen werden.

Einsatzgrenzen

Der Einsatzbereich des TECEflex Systems ist für Erdgas auf eine Eingangsbelastung ≤ 138 kW bzw. ≤ 110 kW bei Anschluss nur eines Gasgerätes begrenzt.

Schutz gegen Eingriffe Unbefugter

Um die Folgen von Eingriffen Unbefugter in die Gasinstallation von Gebäuden mit häuslicher und vergleichbarer Nutzung (Hausinstallation) zu minimieren bzw. Eingriffe Unbefugter zu erschweren, sind grundsätzlich aktive und ggf. passive Maßnahmen erforderlich.

Aktive Maßnahmen

Das Schutzziel aktiver Maßnahmen ist die Unterbrechung der Gaszufuhr bei nicht bestimmungsgemäßem Gasaustritt durch:

- Öffnen des freien Rohrquerschnittes an jeder beliebigen Stelle des Rohrnetzes nach dem GS Typ K
- Öffnen der Ausgangsverschraubung der Gerätearmatur

Für TECEflex Gasleitungen werden alle Anforderungen an aktive Maßnahmen bereits durch den als Sicherheitselement geforderten GS Typ K erfüllt.

Der GS Typ K ist leistungsangepasst auszulegen und grundsätzlich mit einer thermischen Absperreinrichtung (TAE) metallisch leitend zu verbinden (z. B. direkt verschraubt). Das Rohrnetz ist so zu dimensionieren, dass am Verbraucher genügend Versorgungsdruck zur Verfügung steht und dass bei an der ungünstigsten Stelle voll geöffnetem Rohrquerschnitt noch genügend Gas austritt, damit der GS Typ K sicher schließt. Leitungsenden bzw. Leitungsauslässe sind möglichst zu vermeiden.

Prüföffnungen vor der Gas-Druckregelung sind auszuschließen. Prüföffnungen hinter der Gas-Druckregelung müssen durch konstruktive Maßnahmen einen Bohrungsdurchmesser von ≤ 1 mm haben. Sollten aus betriebsbedingten Notwendigkeiten Prüföffnungen mit größerem Öffnungsdurchmesser vorgesehen sein, so müssen diese in "allgemein zugänglichen Räumen" passiv gesichert sein.

Das erste Bauteil einer aktiven Maßnahme ist unmittelbar nach der Hauptabsperreinrichtung (HAE) bzw. dem Gas-Druckregelgerät, wenn dieses direkt nach der HAE angeordnet ist, zu installieren (Ausnahme: Mehrfamilienhaus mit Etagengasanwendung bei Niederdruck-Gasverteilung ≤ 25 mbar).

Bei Verbrauchs- oder Abzweigleitungen mit Streckenbelastungen ≤ 138 kW ist ein GS zu installieren. Dieser GS ist unmittelbar nach dem Abzweig von der Verteilungsleitung bzw. nach dem Austritt aus Wand/Schacht/Kanal einzubauen.

Bei TECEflex Gasleitungen ist das Schutzziel gegen Eingriffe Unbefugter bereits durch das geforderte Sicherheitselement GS Typ K erfüllt. Passive Maßnahmen sind daher nicht zwingend erforderlich, können aber ggf. eingesetzt werden.

Passive Maßnahmen sind:

- Vermeidung von Leitungsenden bzw. Leitungsauslässen.
- Anordnung der Gasinstallation in nicht "allgemein zugänglichen Räumen".
- Verwendung von Sicherheitsverschlüssen nach DVGW-Prüfungsgrundlage VP 634. Hinweis: Verschlüsse mit Verdrehsicherung unter Zuhilfenahme von "Gewinde-Dichtklebstoffen" nach DVGW-Prüfgrundlage VP 405 gelten als Sicherheitsverschlüsse.
- Verwendung von Einrichtungen als konstruktive Schutzmaßnahmen für lösbare Verbindungen. Dies sind geeignete Kapselungen verdrehbarer Teile wie z. B. den Überwurfmuttern von Verschraubungen oder den Schrauben von Flanschen.
- Verdrehsicherungen von Überwurfmuttern unter Zuhilfenahme von "Gewinde-Klebstoffen" nach DVGW-Prüfgrundlage VP 405 gelten ebenfalls als geeignete Zugriffssicherungen.

In "allgemein zugänglichen Räumen" sind o. g. Sicherheitsverschlüsse und konstruktive Schutzmaßnahmen bzw. Zugriffssicherungen in Leitungsabschnitten erforderlich, die vor aktiven Maßnahmen liegen.

Bemessungsverfahren

Um einen sicheren Betrieb zu gewährleisten, ist das Bemessungsverfahren der TRGI an folgenden Zielen ausgerichtet:

- Sicherstellung des Gasgeräteanschlussdruckes von 20 mbar hinter der Gasgeräteanschlussverschraubung.
- Sicherstellung der Funktion des Gasströmungswächters, wenn der Rohrquerschnitt an einer beliebigen Stelle bzw. die Gasgeräteanschlussverschraubung geöffnet wird. Schutzziel: Manipulationssicherheit
- Sicherstellung der Funktion des Gasströmungswächters, wenn es beim Brand zu einem Ausfall der TECEflex Leitungsanlage durch thermische Belastung kommt.
 Schutzziel: Brand- und Explosionssicherheit

Die Rahmenbedingungen für das Bemessungsverfahren sind:

- · Gasinstallationen bis 100 mbar
- Bezug auf Erdgas L mit 8,6 kWh/m³
- · Ausgangsdruck am Gas-Druckregelgerät 23 mbar
- Umstellung der Druckverluste von mbar auf die Einheit Pascal (Pa)
- zulässiger Gesamtdruckverlust zwischen Ausgang des Gas-Druckregelgeräts und Ausgang der Geräteanschlussarmatur nicht mehr als 300 Pa
- belastungsabhängige Bestimmung der Druckverluste der einzelnen Bauteile einschließlich des Gaszählers
- Form- und Verbindungsstücke werden als äquivalente Rohrlängenzuschläge berücksichtigt
- Anpassung der Gleichzeitigkeit an heutige Gerätearten und Betriebsbedingungen
- Auswahl und Abgleich des GS als integraler Bestandteil des Bemessungsverfahrens
- Einführung eines Diagramm- und Tabellenverfahrens

Diagrammverfahren

Das Diagrammverfahren ist ein vereinfachtes Verfahren für Einzelzuleitung und Verteilerinstallation. Aus einem Diagramm für vorgegebene Bauteilkombinationen wird die maximal zulässige Leitungslänge ermittelt. Die Auswahl der Bauteile (GS, Gaszähler und Geräteanschlussarmatur) ist in Abhängigkeit von der Nenn- bzw. Streckenbelastung vorgegeben. Der Druckverlust dieser Bauteile und der Gesamtdruckverlust von 300 Pa sind vorgegeben.

Anwendung des Diagrammverfahrens

Das Diagrammverfahren kann bei einer Einzelzuleitung oder Verteilerinstallation genutzt werden. Es führt wesentlich schneller zum Ziel, setzt aber voraus, dass neben dem ermittelten Rohrdurchmesser auch die im Diagramm der Belastung zugeordneten Größen von GS, Gaszähler und Geräteanschlussarmatur wie angegeben eingesetzt

werden. Der Gesamtdruckverlust von 300 Pa ist vorgegeben. Die Geräteanschlussarmatur kann auch größer gewählt werden, jedoch kann der dadurch eingesparte Druckverlust bei dem Diagrammverfahren nicht zu einer evtl. Minderung des Rohrdurchmessers genutzt werden. Dies ist nur mit dem Tabellenverfahren möglich. Ein vom Netzbetreiber bzw. Messstellenbetreiber bereitgestellter größerer Gaszähler kann auch gewählt werden; er kann jedoch nicht zur Minderung des Rohrdurchmessers bzw. der Vergrößerung der Rohrlänge genutzt werden. Die Diagramme geben die maximale Länge von Leitungen bei gegebener Streckenbelastung an.

In dem Diagramm sind für jede TECEflex Rohrdimension Kennlinien eingezeichnet. Die Kennlinien stellen die maximalen Rohlängen dar – bei Verwendung einer Durchgangsanschlussarmatur. Für die Dimension 20 mm (20 x 2,8) gilt die Kennlinie für eine Anschlussarmatur DN 15 (1/2 "). Diese ist mit "15D" gekennzeichnet, das "D" steht für "Durchgang". Wird eine Geräteanschlussarmatur in Eckform verwendet, wird der Druckverlust über zusätzliche Winkel berücksichtigt. Die Anzahl der zusätzlichen Winkel stehen an der jeweiligen Kennlinie. Beispiel: "E + 1" bedeutet Eckform mit einem zusätzlichen Winkel. Die im Diagramm fett gezeichneten Kennlinien sind die Kennlinien ohne zusätzliche Fittings. Die darunter liegenden Kurven geben die maximale Rohrlänge mit der jeweiligen Anzahl zusätzlicher Winkel bzw. Fittingkennzahl an (2, 4, 6 usw.). Für weitere Fittings müssen folgende Fittingkennzahlen dazuaddiert werden:

Fitting	Kennzahl
Winkelkupplung	1,0
Kupplung	0,5
alternativ zum geraden Gewindeübergangsver- binder: Wandscheibe oder Win- kelübergangsverbinder	1,5

Fittingkennzahlen beim Diagrammverfahren

Der Druckgewinn durch Höhe wird nicht berücksichtigt. Die Auswahl des GS Typ K und des Gaszählers erfolgt in der Zeile unter den Diagrammen. Eine Auswahl eines größeren GS ist nicht zulässig! Der GS-Abgleich ist in den Diagrammen bereits enthalten.

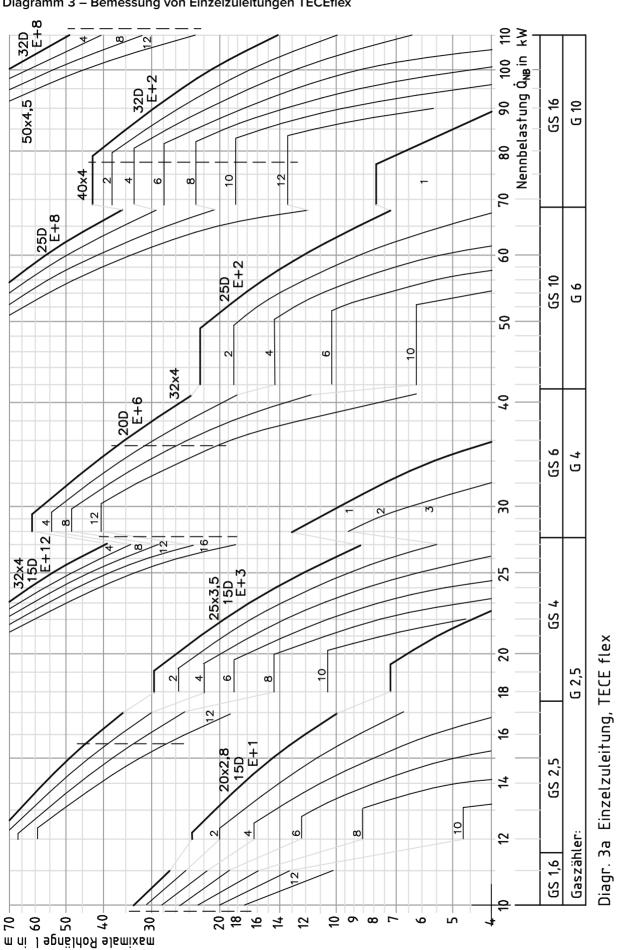
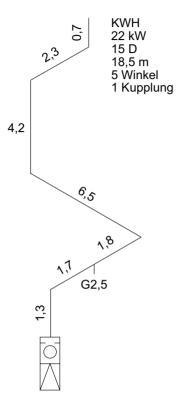



Diagramm 3 – Bemessung von Einzelzuleitungen TECEflex

Beispielrechnung mit dem Diagrammverfahren

Hinweis: Die Tabellen und Diagramme sind analog der Diagramme in der TRGI 2008 nummeriert.

Beispiel:

Beispiel Einzelzuleitung

Als Beispiel wird der Einzelanschluss eines Heizgerätes mit einer Nennbelastung von 22 kW durchgerechnet. Das Gerät benötigt eine Anschlussleitung von 18,50 m. Zusätzlich werden fünf Winkelkupplungen und eine Standardkupplung geradeaus benötigt. Der Geräteanschlusshahn ist 1/2 " in Durchgangsform (DN 15 D). Der Gasströmungswächter Typ K wird nach dem Druckregler montiert.

1. Ermittlung des Gaszählers

An der waagerechten Achse des Diagramms – siehe nächste Seite – kann die Nennbelastung abgelesen werden. Bei dem Wert 22 kW wird eine gerade Linie nach unten gezogen. Unter dem Diagramm findet sich eine zweizeilige Tabelle. In der unteren Zeile kann der für die Nennbelastung passende Gaszähler abgelesen werden (siehe A), in diesem Beispiel der Gaszählertyp G 2,5. Es ist ohne Weiteres möglich, einen größeren Gaszähler, wie z. B. den Gaszählertyp G 4, zu wählen. Die Auswahl eines kleineren Gaszählers ist nicht zulässig.

2. Auswahl des Gasströmungswächters

In der oberen Zeile der Tabelle sind die zu einzusetzenden Gasströmungswächter abzulesen (siehe ®). Für 22 kW Nennbelastung wird ein Gasströmungswächter GSK Typ 4 benötigt, es darf auch nur dieser eingesetzt werden.

3. Ermittlung der maximal möglichen Rohrlänge

In der Installation sollen fünf Winkelkupplungen und eine Durchgangskupplung verbaut werden. In dem Diagramm befinden sich Kurvenscharen für jede Rohrdimension. Die fett gezeichneten Kurven stehen für die maximale Rohrlänge ohne zusätzliche Fittings. Unter diesen Kurven finden sich die Kurvenscharen für Fittingkennzahlen.

Merke:

Eine Winkelkupplung hat die Fittingkennzahl 1. Alle weiteren relevanten Fittingkennzahlen sind der Tabelle "Fittingkennzahlen beim Diagrammverfahren" (s. o.) zu entnehmen. Für dieses Beispiel wird die Fittingkennzahl wie folgt ermittelt:

Winkelkupplung: $5 \times 1 = 5$ Kupplung: $1 \times 0.5 = 0.5$ Summe Fittingkennzahl: 5 + 0.5 = 5.5

Gewählt = Kennlinie "6"

Wird bei 22 kW eine senkrechte Linie nach oben durch das Diagramm gezogen, schneidet diese Gerade die Kennlinie der Dimension 25 mit der Fittingkennzahl 6 (siehe ©) bei ca. 10,50 m Rohrlänge (siehe ®). In der Aufgabenstellung ist aber eine Leitungslänge von 18,50 m vorgegeben. In diesem Fall reicht eine Rohrleitung der Dimension 25 also nicht aus. Wäre die Gasleitung fittinglos verlegt worden, würde diese Dimension 25 ausreichen: Die senkrechte Linie schneidet die Kennlinie der Dimension 25 mit 0 Fittings bei ca. 20 m. Da aber 5 Winkel und 1 Kupplung nötig sind, muss auf die Dimension 32 gesetzt werden: Der Schnittpunkt der senkrechten Linie mit der Kennlinie der Dimension 32 mm liegt außerhalb des Diagramms bei ca. 75 m (siehe © und ©).

Ergebnis:

Wird ein Gasgerät mit einer Nennbelastung von 22 kW an einer Gasleitung mit 18,50 m Länge mit fünf Winkeln und einer Kupplung betrieben, ist eine Leitungsdimension von 32 mm zu wählen. Mit dieser Auslegung ist der Versorgungsdruck des Gasgerätes gegeben und die Funktion des Gasströmungswächters sichergestellt. Ein nachträglicher Abgleich der Berechnung ist nicht nötig.

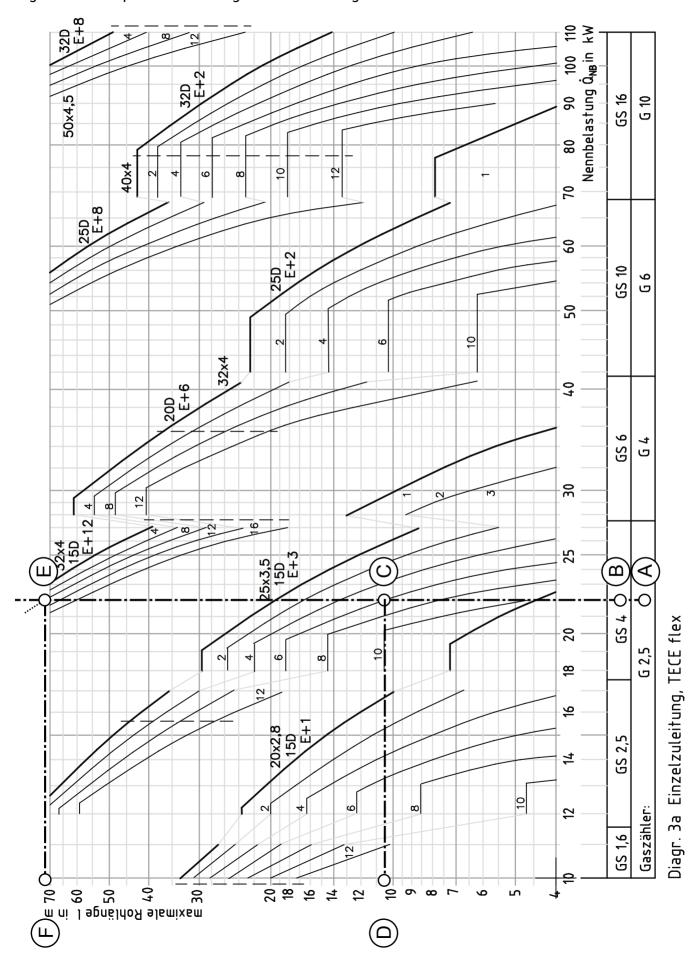


Diagramm 3 – Beispiel zur Bemessung von Einzelzuleitungen TECEflex

Gasinstallation

Tabellenverfahren

Das Tabellenverfahren bietet den Vorteil, dass unterschiedliche Rohrmaterialien in einer Anlage berücksichtigt werden können. Zudem können Druckgewinne aus geodätischer Höhe oder überdimensionierten Gaszählern berücksichtigt werden. Es lassen sich mit dem Tabellenverfahren auch komplexere Anlagen berechnen.

Das Tabellenverfahren wird in vier Schritten angewendet.

- 1. Schritt: Über die Nennbelastung können
- der Druckverlust der GS (Tabelle 19.1 und 19.2)
- der Druckverlust der Zählergruppe (Tabelle 14.2)
- das Druckgefälle der Rohrleitungen (Tabelle 20.1 und 20.2)
- der Druckverlust der Geräteanschlussarmatur (Tabelle 17)

ermittelt werden

- 2. Schritt: Ermittlung der Druckverluste der Rohrleitungen der einzelnen Teilstrecken
- 3. Schritt: Berücksichtigung des Druckgewinnes aus geodätischer Höhe ($\Delta p_H = -4 \times H$)
- 4. Schritt: GS-Abgleich (Tabelle 21)

Leitungsschema

Es ist ratsam, die Anlage als Leitungsschema in einer isometrischen Darstellung zu skizzieren. Die TRGI bietet im Anhang einige Berechnungsbeispiele.

Ermittlung der Nennbelastung

Die Nennbelastung für die Berechnungen ist auf ganze Zahlen zu runden.

- Die Nennbelastung ist der Beschreibung oder dem Typenschild des Gasgerätes zu entnehmen.
- Für Gasherde mit maximal 4 Flammen gilt eine Nennwärmebelastung von 9 kW.
- Für Gasherde mit mehr als 4 Flammen gilt das 0,6-fache der Summe aller Brennstellen.
- Sofern die Nennbelastung des angeschlossenen Gerätes bekannt ist, wird dieser Wert herangezogen. Sonst gilt für Gassteckdosen je nach Installationsort eine Nennwärmebelastung von 9 kW bzw. 13 kW.
 (Siehe TRGI 2008 Tabelle 28 in Abschnitt 8.1.3.5.3)

Berücksichtigung der Druckdifferenz durch den geodätischen Höhenunterschied

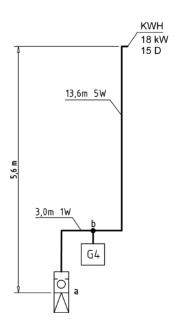
Durch den Dichteunterschied zwischen Erdgas und Luft entsteht in Steigleitungen ein Druckgewinn. Es werden nicht die einzelnen Teilstücke, sondern die Installation als Ganzes betrachtet. Die Höhe "H" ergibt sich aus der Höhendifferenz zwischen Hausanschluss und Gasgerät.

$$\Delta p_H = -4 \times H$$

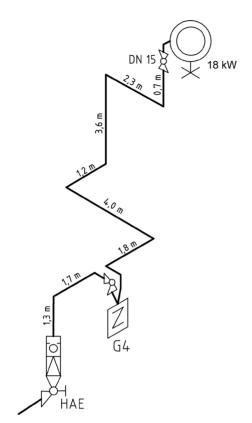
H in (m)

 Δp_H in (Pa)

Ermittlung der Berechnungslänge


Die Berechnungslänge setzt sich aus der Rohrlänge und der Summe der äquivalenten Längen der verwendeten Fittings zusammen. (Tabelle 23)

Abgleich GS Typ K


Um das Schutzziel Brand und Explosionssicherheit zu erfüllen, ist ein GS-Abgleich nach Tabelle 21 zwingend erforderlich.

Beispielrechnung mit dem Tabellenverfahren

Grundlage einer Berechnung ist das (skizzierte) Leitungsschema der geplanten Gasinstallation, nachfolgend die Darstellung gemäß TRGI und schematisch:

 ${\bf Einzelzuleitung,\,schematische\,\,Darstellung\,\,mit\,\,Kurzzeichen}$

Einzelzuleitung, Darstellung gemäß TRGI

Beispiel:

Als Beispiel wird der Einzelanschluss eines Heizgerätes mit einer Nennbelastung von 18 kW durchgerechnet. Das Gerät benötigt eine Anschlussleitung von 18,5 m Länge sowie sechs Winkelkupplungen und vier Übergangsverbinder. Der Geräteanschlusshahn ist 1/2 " in Durchgangsform (DN 15 D). Der Gaszähler vom Typ 2,5 ist vom Versorger vorgegeben.

Zunächst werden die Vorgaben des Beispiels in das "Berechnungsformblatt für Einzelzuleitungen" (siehe ausgefülltes Formblatt weiter unten) übertragen:

• Benennung des Gasgerätes: Kombiwasserheizer (KWH)

· Nennbelastung: 18 kW

· Geräteanschlussarmatur: 15 D

· Gaszähler: G 2,5

1. Bemessung des GS

Bei der gegebenen Nennbelastung von 18 kW muss ein GS K 4 eingesetzt werden, der entsprechende Druckverlust beträgt – laut Tab. 19.1 – 15 Pa. Wichtig: Der GS darf nicht größer als hier ermittelt gewählt werden.

• GS: K 4

· Druckverlust des GS: 15 Pa

2. Ermittlung des Druckverlustetes der Zählergruppe

Mit dem vorgegebenen Gaszähler G 2,5 und der Nennbelatung von 18 kW ergibt sich – aus Tab. 14.1 – ein Druckverlust von 60 Pa.

• Druckverlust der Zählergruppe: 60 Pa

3. Ermittlung des Druckverlustes der Rohrleitung

Falls vor dem Gaszähler ein anderes Rohrmaterial als TECEflex eingesetzt wird, kann der entsprechende Druckverlust im unteren Teil des Formblattes eingetragen werden (Rohr vor dem Zähler). Besteht die Leitungsanlage komplett aus TECEflex, wird der Druckverlust im oberen Teil eingetragen (Rohrdruckverlust R).

Die Berechnungslänge ergibt sich aus der Summe der Rohrlänge sowie der äquivalenten Rohrlängen der Fittings.

Da die Rohrlänge mit 18,5 m relativ hoch ist, sollte der spezifische Druckverlust nicht so hoch werden. Bei einer TECEflex Leitung der Dimension 25 mm ergibt sich aus Tab. 20.1 – bei gegebener Nennleistung von 18 (19) kW – ein spezifischer Druckverlust der Rohrleitung von 6 Pa/m.

· Rohrdimension: 25

• R nach Tabelle: 6 Pa/m

Die Rohrlänge ergibt sich aus der Summe der Teilstrecken: 1,3~m+1,7~m+1,8~m+5,9~m+1,2~m+3,6~m+2,3~m+0,7~m=18,5~m

• Rohrlänge: 18,5 m

Für die sechs Winkel ergibt sich aus Tab. 23 eine äquivalente Rohrlänge von jeweils 1,7 m, für die vier Übergangsverbinder von 0,4 m. Daraus ergibt sich folgender Formteilzuschlag:

6 x 1,7 m = 10,2 m

 $4 \times 0.4 \text{ m} = 1.6 \text{ m}$

10,2 m + 1,6 m = 11,8 m

• Formteilzuschlag: 11,8 m

Aus der Rohrlänge und dem Formteilzuschlag ergibt sich die Berechnungslänge:

11,8 m + 18,5 m = 30,3 m

• Berechnungslänge: 30,3 m

Der Druckverlust ist das Produkt aus spezifischen Druckverlust und Berechnungslänge:

30,3 m x 6 Pa/m = 181,6 Pa

• Rohrdruckverlust: 181,6 Pa, gerundet 182

Gasinstallation

4. Berücksichtigung des Druckgewinns aus geodätischer Höhe

Der Höhenunterschied (H) zwischen Gasduckregler und Geräteanschlussarmatur beträgt in diesem Beispiel:

H = 5,6 m (1,3 m + 3,6 m + 0,7 m)

$$\Delta$$
 pH = -4 x H
-4 x 5,6 = -22,4 Pa

- · Höhe Gerät über Leitungsanfang: 5,6 m
- Druckgewinn durch Höhe: -22 Pa (gerundet)

5. Berücksichtigung des Druckverlustes der Geräteanschlussarmatur

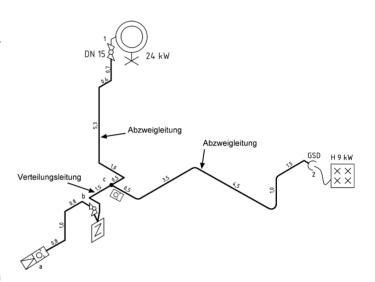
Es wird eine Geräteanschlussarmatur 15 D mit 1/2 " Durchgang eingesetzt. Über die Bezeichnung 15 D und der Nennbelastung (18 kW) wird aus der Tab. 17b der entsprechende Druckverlust abgelesen:

• Druckverlust Geräteanschlussarmatur: 20 Pa

6. Druckverlust bis zum Gasgerät

Anschließend werden alle Druckverluste/-gewinne (Angaben in den rechteckigen Kästen) summiert:

 Gesamtdruckverlust bis zum Gerät: 255 Pa
 Der errechnete Druckverlust von 255 Pa liegt unterhalb des zulässigen Gesamtdruckverlustes nach TRGI 2008 von 300 Pa, daher ist der Versorgungsdruck sichergestellt.


7. Abgleich des GS

Zuletzt erfolgt der Abgleich des Gasströmungswächters mit Hilfe der Tab. 21: Die berechnete Röhrlänge von 30,3 m ist kleiner als die maximale Rohrlänge des eingesetzten GS K 4 (31 m).

Damit ist auch die Bedingung der Betriebssicherheit des GS erfüllt.

8. Berechnung von Gasinstallationen mit zwei oder mehr Geräten

Bei der Berechnung von Installationen mit zwei oder mehr Gasgeräten müssen für die Verteilerleitungen andere Tabellen verwendet werden als bei den Anschlussleitungen. Die Druckverlusttabellen der Verteilungsleitungen enthalten Gleichzeitigkeitsfaktoren, wie sie bei üblicher Nutzung der Gasgeräte zu erwarten sind, bei den Tabellen für Anschlussleitungen wird die Gleichzeitigkeit nicht berücksichtigt. Die Tabellen sind daher unterteilt und entsprechend beschriftet.

Formblatt 1.1

für 1 Gasgerät (Einzelzuleitung)

Benennung Gasgerät	KWH			
Nennbelastung Q _{NB}	18 kw	255	Gesamtdruckverlust bis zum Gerät $\Delta \textbf{P}_g$ - $\textbf{300 Pa}$	
Geräteanschlussarmatur	15 D	20	Druckverlust Geräteanschluss- armatur nach Tab. 17 a/b	
Höhenunterschied Gerät zu Leitungsanfang	5,6 _m	-22	Druckgewinn/-verlust durch Höhe $\Delta p_{\mbox{\scriptsize h}}$ = (-4) x H	
Rohrdimension TECEflex (d _a oder DN)	25			GZ USS
R nach Tab. 20.1	6 Pa/m	182	Rohrdruckverlust $\Delta p_{Rohr} = (R \times I_R)$	Feilstrecke (b) ab GZ bis Geräteanschluss
	18,5 Rohrlänge I	+ 11,8 = Formteilzuschlag I _{FT} nach Tab. 23	30,3 m Berechnungslänge I _R	Teilstre bis Gerä
			Druckverlust der Zählergruppe	
		60	Druckverlust der Zählergruppe	
Gaszähler G	2,5		Δ p $_{ZG}$ nach Tab. 14.1	
Rohrdimension				
(d _a oder DN)			Rohrart vor dem Zähler	E bis GZ
R nach - Tab. 20.1 (TECEflex)	Pa/m		Rohrart vor dem Zähler $\label{eq:Rohrdruckverlust} Rohrdruckverlust \\ \Delta p_{Rohr} = (R x I_R)$	(a) von HAE bis GZ
R nach			Rohrdruckverlust	Teilstrecke (a) von HAE bis GZ
R nach - Tab. 20.1 (TECEflex) - TRGI Tafel 1-4			Rohrdruckverlust $\Delta p_{Rohr} = (R \times I_R)$ m	Teilstrecke (a) von HAE bis GZ
R nach - Tab. 20.1 (TECEflex) - TRGI Tafel 1–4 (metallene Rohrleitung) Gasströmungswächter	Rohrlänge I 4 t aus	Formteilzuschlag I _{FT} nach Tab. 23	Rohrdruckverlust △p _{Rohr} = (R x I _R)	Tellstrecke (a) von HAE bis GZ

Berechnung nach dem Tabellenverfahren: Beispiel Einzelzuleitung

Berechnungstabellen

Δp _{zG}	G 2,5	G 4	G 6	G 10	G 16
Pa			Ġ _{NB} [kW]		
30	5	8	12	20	25
35	8	14	21	35	44
40	11	18	27	45	57
45	13	21	32	53	68
50	15	24	36	61	77
55	16	27	40	67	85
60	18	29	44	73	92
65	19	31	47	78	99
70	21	33	50	84	106
75	22	35	53	88	112
80	23	37	56	93	118
85	24	39	58	97	123
90	25	40	61	101	128
95	26	42	63	105	134
100	27	43	65	109	(138)
105	28	45	68	113	
110	29	46	70	117	
115	30	48	72	120	
120	31	49	74	124	
125		50	76	127	
130	32	52	78	130	

Tab. 14.1 Druckverlust Zählergruppe (Balgengaszähler) –	Einzelzuleitung

Δp _{zg}	G 2,5	G 4	G 6	G 10	G 16
Pa			Ġ _{NВ} [kW]		
30	5	8	13	22	28
35	9	15	23	39	51
40	12	20	30	53	83
45	14	23	35	74	110
50	16	27	40	92	133
55	18	30	45	108	(153)
60	20	32	50	123	
65	21	35	58	(137)	
70	23	37	66		
75	24	39	73		
80	25	41	80		
85	27	43	86		
90	28	45			
95	29	47			
100	30	49			
105	31	53			
110	32				
115	33				
120	34				

Tab. 14.2 Druckverlust Zählergruppe (Balgengaszähler) – Verbrauchsleitung

Δp _{zg}	G 25	G 40	G 65	G 100				
Pa		Ġ _{NB} [kW]						
30	43	69	112	(173)				
35	75	121	(196)					
40	97	(156)						
45	115							
50	131							
55	(145)							

Tab. 14.3 Druckverlust Balgengaszähler* G 25 bis G 100)

(*Für Drehkolben- und Turbinenradzähler sind die Druckverlustangaben des Herstellers zu verwenden.)

Δp _{zg}	GSD*	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50
Pa				\dot{Q}_{NB} [kW]			
5		7	12	21	37	58	75
10	5	10	16	27	48	75	97
15	6	11	19	32	57	89	115
20		13	21	36	65	101	130
25	7	14	24	40	72	112	(144)
30	8	15	26	44	78	121	
35		16	28	47	84	130	
40	9	17	29	50	89	(139)	
45		18	31	53	94		
50	10	19	33	55	99		
55		20	34	58	104		
60		21	36	60	108		
65	11	22	37	63	112		
70		23	38	65	116		
75	12		40	67	120		
80		24	41	69	124		
85		25	42	71	128		
90	13	26	43	73	131		

^{*}Gassteckdose gerechnet mit GS 1,6 K

Tab. 17a Druckverlust Geräteanschlussarmatur mit integrierter TAE – Eckform

Δp _{zG}	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50
Pa			Ġ _{NB}	[kW]		
5	10	21	33	56	83	(135)
10	13	27	43	73	108	
15	16	32	51	86	127	
20	18	36	58	97	(144)	
25	20	40	64	108		
30	21	44	69	117		
35	23	47	74	126		
40	25	50	79	134		
45	26	53	84	(142)		
50	27	55	88			
55	29	58	92			
60	30	60	96			
65	31	63	100			
70	32	65	103			
75	33	67	107			
80	34	69	110			
85	35	71	114			
90	36	73	117			

Tab. 17b Druckverlust Geräteanschlussarmatur mit integrierter TAE – Durchgangsform

Δp _{GS+TAE} Pa	GS K 1,6	GS K 2,5	GS K 4	GS K 6	GS K 10	GS K 16
10	6					
15	7	12	18	28	42	69
20	8	13	20	30	51	81
25	9	14	23	34	57	91
30	10	16	25	37	62	99
35	11	17	27	41	68	110
45	12*					
50	13*					

^{*} nur bei Verwendung einer GSD

Tab. 19.1 Druckverlust Gasströmumgswächter GS K in Kombination mit TAE – Einzelzuleitung und Abzweigleitung

R	Dim.	Dim.	Dim.	Dim.	Dim.	Dim.	Dim.
Pa/m20	16	20	25	32	40	50	63
0,4				8	20	40	74
0,6			4	11	26	51	94
0,8			5	13	30	61	110
1,0			6	15	35	70	
1,2		3	7	16	38	77	
1,4			8	18	42	83	
1,6		4		19	45	90	
1,8			9	21	48	96	
2,0		5	10	23	52	104	
2,5		6	11	26	60	110	
3,0	3		12	29	66		
3,5		7	14	31	72		
4,0	4	8	15	34	79		
5	5	9	17	39	90		
6		10	19	43	99		
7	6	11	21	47	107		
8			22	51	110		Erstaus-
						Wa	ahl
9	7	12	24	54			
10		13	26	59			
12	8	15	29	65			
14	9	16	31	71			
16	10	17	34	76			
18		19	36	81			
20	11	20	38	86			

Tab. 20.1 Rohrdruckgefälle TECEflex – Einzelzuleitung und Abzweigleitung

GS K	Rohr d _a	I _{GSmax} m
1,6	16 20	22 58
2,5	16 20 25	10 26 79
4	16 20 25	4 10 31
6	20 25 32	5 16 63
10	25 32 40	6 24 100
16	32 40	10 42

Tab. 21 Maximale Rohrlänge I_{GSmax} des GS K

Δp _{GS+TAE} Pa	GS K 1,6	GS K 2,5	GS K 4	GS K 6	GS K 10	GS K 16
10	7					87
15	8				52	116
20	9	14	23	35	67	138
25	10	16	25	38	82	
30	11	17	28	41	86	
35	12	19	30	45		
40	13	20	32	51		
45		21	34			
50		22				

Tab. 19.2 Druckverlust Gasströmumgswächter GS K in Kombination mit TAE – Verbrauchs- und Verteilungsleitung

(Gilt nur für Teilstrecken, über die ausschließlich Gasgeräte mit Nennbelastungen ≤ 40 kW angeschlossen sind.)

R Pa/m20	Dim. 20	Dim. 25	Dim. 32	Dim. 40	Dim. 50	Dim. 63
0,4			9	22	45	125
0,6			12	28	69	138
0,8		6	14	34	93	
1,0		7	17	39	110	
1,2		8	18	43		
1,4		9	20	46		
1,6			22	53		
1,8		10	23	61		
2,0		11	25	72		
2,5	6	12	29	90		
3,0	7	14	32	105		
3,5	8	15	35	120	Grenze	Erstaus-
4,0	9	17	38	138	Wa	
5	10	19	44		Verteilun	gsleitung
6	11	21	49			
7	12	23	59		Grenze	Erstaus-
8	13	25	68		Wa	ahl
9	14	27	76		Verbrauc	hsleitung
10	15	29	88			
12	16	32	103			
14	18	35	117			
16	19	38	131			
18	21	40	138			
20	22	43				

Tab. 20.2 Rohrdruckgefälle TECEflex – Verbrauchs- und Verteilungsleitung

Kupfer d _a	15	18	22	28	35	42	54
Stahl* DN	10	15	20	25	32	40	50
PE-X d _a (äq)	16	20	25	32	40	50	63
* mittel und schwer							

Tab. 21.1 Äquivalente Nennweiten bei Mischinstallation

Ġ _{NB} [kW]	5	6	7	8	9	10	11	12	13
Δp _{GA} [Pa]	7	10	13	17	22	28	32	38	45

Tab. 22 Gassteckdose nach VP 635-1 ohne GS

Gasinstallation

Fitting	Ausführung	Äquivalente Rohrlänge (m)
Übergangsverbinder	16 mm x ½"	0,3
Kupplung	16 mm	0,2
Winkel	16 mm	1
T-Stück DG	16 mm	0,2
T-Stück AG	16 mm	1,1
Übergangsverbinder	20 mm x ¾"	0,6
Kupplung	20 mm	0,4
Winkel	20 mm	1,7
T-Stück DG	20 mm	0,5
T-Stück AG	20 mm	1,9
Übergangsverbinder	25 mm x ¾"	0,4
Kupplung	25 mm	0,2
Winkel	25 mm	1,7
T-Stück DG	25 mm	0,3
T-Stück AG	25 mm	1,6
Übergangsverbinder	32 mm x 1"	0,3
Kupplung	32 mm	0,2
Winkel	32 mm	1,6
T-Stück DG	32 mm	0,2
T-Stück AG	32 mm	1,6
Übergangsverbinder	40 mm x 1¼"	0,4
Kupplung	40 mm	0,2
Winkel	40 mm	2
T-Stück DG	40 mm	0,3
T-Stück AG	40 mm	2,2
Übergangsverbinder	50 mm x 1½"	0,5
Kupplung	50 mm	0,2
Winkel	50 mm	2,3
T-Stück DG	50 mm	2,3
T-Stück AG	50 mm	2,5
Übergangsverbinder	63 mm x 2"	0,6
Kupplung	63 mm	0,2
Winkel	63 mm	3,7
T-Stück DG	63 mm	0,8
T-Stück AG	63 mm	3,7

Tab. 23 Äquivalente Rohrlängen (Zuschläge) für TECEflex Fittings

Δp _{AE}	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50
Pa			Ġ _{NB}	[kW]		
5	10	18	29	53	82	106
10	13	23	38	68	106	(137)
15	16	27	45	81	126	
20	18	31	51	92	(143)	
25	20	34	56	101		
30	21	37	61	110		
35	23	39	66	118		
40	25	42	70	126		
45	26	44	74	133		
50	27	47	78	(140)		

 $\begin{tabular}{ll} Tab.\ 24.1a & Druckverlust\ Absperreinrichtung\ -\ Einzelzuleitung\ und\ Abzweigleitung\ -\ Eckform \end{tabular}$

(Druckverluste für Absperreinrichtungen in Eckform gelten auch für Magnetventile)

Δp _{AE}	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50
Pa			Ġ _{NB}	[kW]		
5	15	29	47	79	118	(191)
10	19	38	61	103	(152)	
15	22	45	72	121		
20	25	51	82	(138)		
25	28	56	90			
30	31	61	98			
35	33	66	105			
40	35	70	112			
45	37	74	119			
50	39	78	125			

 $\begin{tabular}{ll} Tab.\ 24.1b & Druckverlust\ Absperreinrichtung\ -\ Einzelzuleitung\ und\ Abzweigleitung\ -\ Durchgangsform \end{tabular}$

Δp _{AE}	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50
Pa			Ġ _{NВ}	[kW]		
5	11	20	33	72	(146)	(205)
10	15	25	42	111		
15	17	30	52	(142)		
20	20	34	67			
25	22	38	81			
30	24	41	93			
35	26	44	105			
40	27	47	115			
45	29	51	125			
50	30	57	(135)			

Tab. 24.2a Druckverlust Absperreinrichtung – Verbrauchs- und Verteilungsleitung – Eckform

Δp _{AE}	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50
Pa			Ġ _{NB}	[kW]		
5	16	33	58	(138)	(234)	(418)
10	21	42	92			
15	25	52	120			
20	28	67	(144)			
25	31	81				
30	34	93				
35	37	105				
40	39	115				
45	41	125				
50	43	(135)				

Tab. 24.2b Druckverlust Absperreinrichtung – Verbrauchs- und Verteilungsleitung – Durchgangsform

Prüfvorschriften für TECEflex Gasleitungen

Die Prüfung für TECEflex Gasleitungen innerhalb von Gebäuden bis 100 mbar setzt sich aus einer Vor- und Hauptprüfung zusammen. Die Prüfungen sind durchzuführen bevor die Leitungen verdeckt oder verputzt sind. Die Prüfungen sind zu dokumentieren.

Vorprüfung

Neu verlegte TECEflex Gasleitungen müssen einer Belastungsprüfung unterzogen werden. Sofern die Anlagenkomponenten eine entsprechende Druckstufe aufweisen, können diese in die Vorprüfung mit einbezogen werden. Während der Vorprüfung darf keine Verbindung zu einem gasführenden Anlagenteil bestehen. Für die Dauer der Prüfungen müssen alle Leitungsöffnungen mit Stopfen, Kappen, Steckscheiben oder Blindflanschen aus metallenen Werkstoffen dicht verschlossen werden.

Die Vorprüfung ist mit Luft oder Stickstoff durchzuführen. Sauerstoff als Prüfmedium ist unzulässig. Der Prüfdruck beträgt 1 bar und darf über eine Stunde nicht abfallen.

Hauptprüfung

Die Hauptprüfung ist eine Dichtheitsprüfung und erstreckt sich auf die Leitungen einschließlich der Armaturen, jedoch ohne Gasgeräte und zugehörige Regel- und Sicherheitseinrichtungen. Der Gaszähler kann in die Hauptprüfung mit einbezogen werden.

Die Hauptprüfung ist mit Luft oder inertem Gas (zum Beispiel Stickstoff oder CO₂), jedoch nicht mit Sauerstoff durchzuführen. Der Prüfdruck beträgt 150 mbar. Nach dem Temperaturausgleich darf der Prüfdruck während der anschließenden Prüfdauer von mindestens 10 Minuten nicht fallen. Das Messgerät muss so genau anzeigen, dass bereits ein Druckabfall von 0,1 mbar erkennbar ist.

Inbetriebnahme

Für die Inbetriebnahme einer Gasinstallation gelten die Vorschriften der TRGI 2008.

Vor dem Befüllen der Anlage mit Gas ist sicherzustellen, dass die unter "Prüfvorschriften für TECEflex Gasleitungen" beschriebenen Prüfungen erfolgreich durchgeführt wurden.

Vor der Einleitung des Gases ist außerdem sicherzustellen, dass alle Leitungsöffnungen verschlossen sind. Dies kann auch durch die direkt vorausgegangenen Prüfungen sichergestellt werden.

Außerdem ist eine Besichtigung jedes Anlagenteiles vorzunehmen, um sicherzustellen, dass jede Öffnung mit metallischen Elementen, wie zum Beispiel Stopfen oder Dichtflanschen, verschlossen sind. Geschlossene Absperr-

einrichtungen gelten hierfür nicht als ausreichend. Sie sind ebenfalls mit metallischen Stopfen, Steckscheiben, Kappen oder Blindflanschen zu verschließen.

Die Leitungsanlagen sind mit Gas solange auszublasen, bis sich keine Luft oder inertes Gas mehr in der Anlage befindet. Das Gas ist gefahrlos mit einem Schlauch ins Freie abzuleiten. Es ist für eine gute Durchlüftung des Raumes zu sorgen.

Unmittelbar nach dem Einlassen des Gases sind die durch die Hauptprüfung bzw. die kombinierte Belastungsprobe und Dichtheitsprüfung nicht erfassten Verbindungsstellen zu prüfen.

Software für TECEflex Gasinstallation

TECEflex SCGas

Zur Berechnung der Dimensionierung von Gasinstallationen mit dem TECEflex Rohrsystem steht Ihnen die TECEflex Gas-Software zur Verfügung. Dieses tabellarisch aufgebaute Programm ist schnell erlernbar und einfach zu bedienen. Sie können es kostenlos – zusammen mit der Bedienungsanleitung – von der Internetseite (www.tece. de) herunterladen.

TECEdendrit

Für die TECEdendrit Haustechnik-Software können Sie eine erweiterte Lizenz erwerben, mit der Sie auch Gasinneninstallationen berechnen können (Preis auf Anfrage).

Gasinstallation

Protokoll über Belastungs- und Dichtheitsprüfung für die TECEflex Gasinstallation

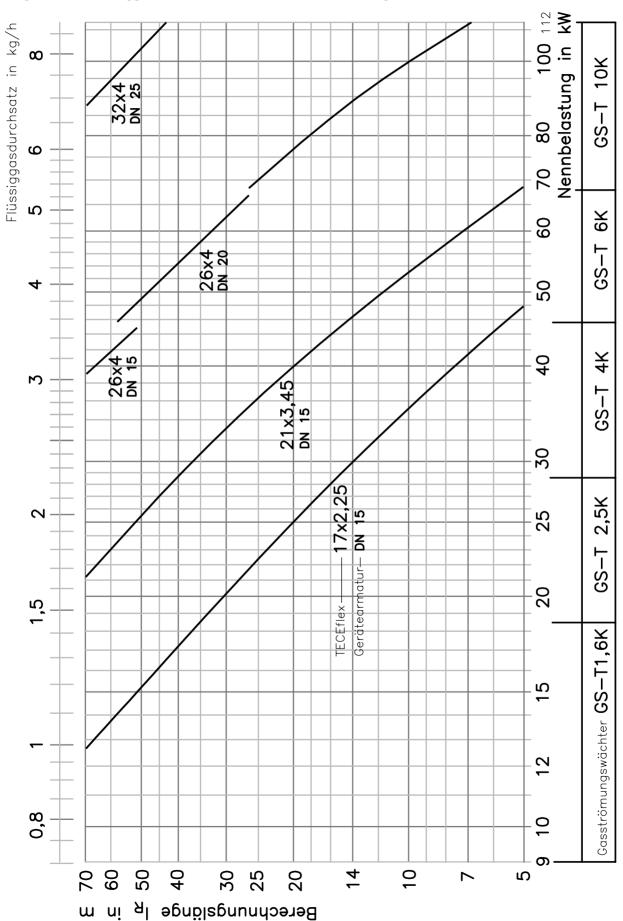
– Bitt	– Bitte beachten Sie die Hinweise und Erläuterungen in der aktuellen Technischen Dokumentation TECEflex! –						
Bau	vorhaben:						
Auft	raggeber/Vertreter:						
Auft	ragnehmer/Installate	eur:					
Max	. Betriebsdruck in m	bar (≤ 100 mbar):					
Die Gasleitung wurde 🔲 als Gesamtleitung		☐ in	Teilabschnit	ten geprüft			
Prüf	medium	☐ (ölfreie) Luft	☐ Stickstoff				
	•	nit metallenen Stopfen, Kappen,	Steckscheiben od	er Blindflan	schen verschlosse	en.	
	nstallation ≤ 100 ml		Dimension	Rohrlänge	Leitungsvolu-	Ergebnis	
1.	Belastungsprüfung	g	TECEflex	in m	men in I/m	in I	
1.1	Armaturen		16 x 2,7		x 0,11 =		
	ausgebaut		20 x 3,3		x 0,16 =		
		ndruck ≥ Prüfdruck)	25 x 4,0		x 0,25 =		
1.2	☐ Prüfdruck 1 bar		32 x 4,0		x 0,45 =		
1.3	Prüfzeit 10 Minu	iten	40 × 4,0		x 0,80 =		
1.4	Prüfdruck währe	end der Prüfzeit nicht gefallen	50 x 4,5		x 1,32 =		
			63 x 6,0		x 2,04 =	Σ =	
2.	Dichtheitsprüfung					<u> </u>	
	_	sind singulary	Γ			-	
2.1	☐ Die Armaturen s		Leitungsvo	olumen	Anpassungszeit	Prüfdauer	
2.2	Prüfdruck 150 m		< 100 l		10 min	10 min	
2.3	Prüfzeit nach Ta		≥ 100 l < 20	00 I	30 min	20 min	
2.4 Prüfdruck während der Prüfzeit nicht gefalle		≥ 200 l < 30	00 I	60 min	30 min		
2.5 ——Ort	☐ Die Anlage ist d	licnt.	 Datum				
	raggeber/Vertreter		Auftragneh (Stempel/U		teur		

Inbetr	iebnahme- und Einweisungsprotokoll für die TECEflex (Sasinstallation				
– Bitte	beachten Sie die Hinweise und Erläuterungen in der aktuellen Techni	schen Dokumentation TECEflex! –				
Bauvo	rhaben:					
Auftra	ggeber/Vertreter:					
۸ 4	and also and the state Hartanian					
Auttra	gnehmer/Installateur:					
F-1	ada Aulanastaila uuudan in Datsiala aanan saas					
Folgei	nde Anlagenteile wurden in Betrieb genommen:					
Nr. Anlagenteil, Apparat * Bemerkungen						
1	Anlagen des Netzbetreibers					
2	Rohrleitungen einschließlich der Verbindungen					
3	Absperreinrichtungen					
4	Gasgeräte (Wärmerzeuger und Trinkwassererwärmer)					
5	Gasherd, Gaswäschetrockner u. a. Gas-Haushaltsklein	geräte				
6	Abgasabführung (Anschlüsse und Verbindungen)					
7	7 Verbrennungsluftversorgung					
8	Kondenswasserableitung					
9	Sonstige					
* Nichtz	utreffendes bitte streichen, Fehlendes ist zu ergänzen.					
Ergän	zende Bemerkungen des Auftraggebers/Betreibers:					
Ergän	zende Bemerkungen des Auftragnehmers/Vertragsinstal	ationsunternehmens:				
Di	e Einweisung über den Betrieb der Anlage ist erfolgt, die	erforderlichen Betriebsunterlagen, Bedienungs-				
	ıleitungen und Hinweise für Instandhaltungsmaßnahmen					
Ort		Datum				
	ggeber/Vertreter schrift)	Auftragnehmer/Installateur (Stampol/Unterschrift)				
Uniter	эсниц	(Stempel/Unterschrift)				

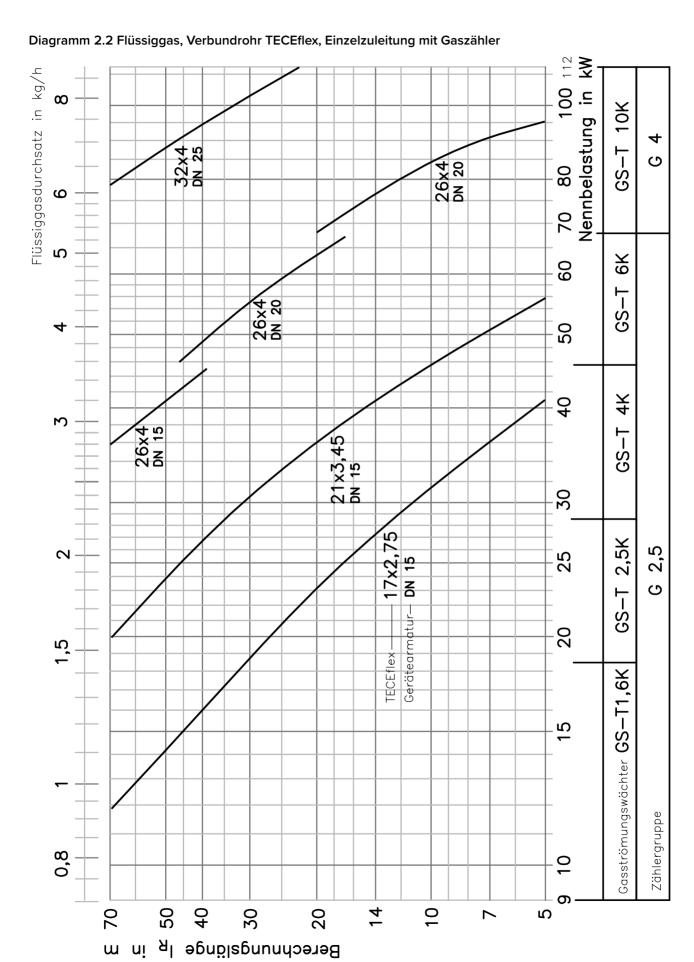
Kopiervorlage

Flüssiggasinstallation mit TECEFlex

Flüssiggasinstallation mit TECEFlex

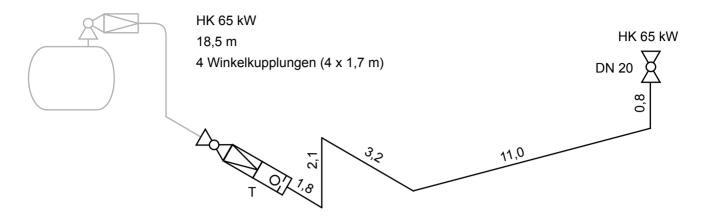

Das TECEflex System ist für die Installation von Flüssiggasleitungen innerhalb von Gebäuden nach den Technischen Regeln Flüssiggas 2012 in Deutschland zertifiziert.

TECEflex darf für die Flüssiggasinstallation nur innerhalb von Gebäuden verlegt werden. Für die nstallation können die TECEflex Metallfittings und die gelben Aluminiumverbundrohre verwendet werden. Die Fittings aus Kunststoff, die Vollkunststoffrohre sowie die weißen Aluminiumverbundrohre sind nicht zugelassen.

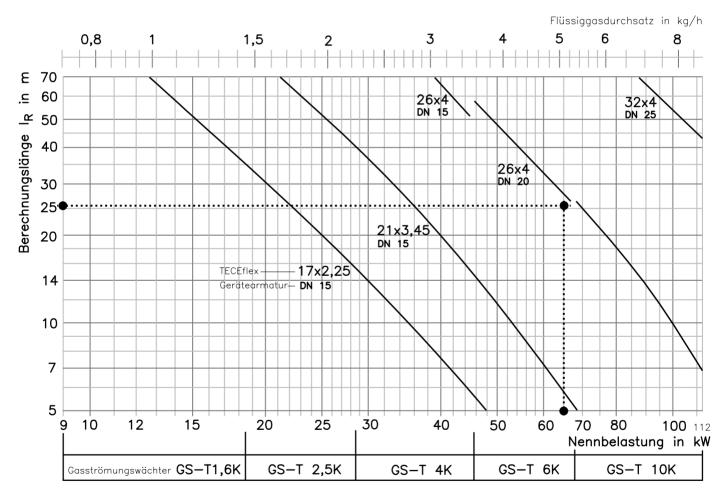

Die Bemessung der Flüssiggasinstallation hat nach der DVGW-TRF 2012 zu erfolgen. Zur Bemessung des TECEflex Systems sind auf den folgenden Seiten abgebildete Tabellen und Diagramme zu verwenden:

Bemessungsdiagramme

Diagramm 2.1 Flüssiggas, Verbundrohr TECEflex, Einzelzuleitung ohne Gaszähler



Einzelzuleitung ohne Gaszähler Verbundrohr TECEflex, Diagr.2.1 Flüssiggas,



Verbundrohr TECEflex, Einzelzuleitung mit Gaszähler Diagr.2.2 Flüssiggas,

Beispielrechnung mit dem Digrammverfahren

Nennbelastung 65 kW Berechnungslänge = 25,7 m

Diagr.2.1 Flüssiggas, Verbundrohr TECEflex, Einzelzuleitung ohne Gaszähler

Ergebnis:

Gasströmungswächter GS-T 6K

Rohr: TECEflex 26 x 4

Flüssiggasinstallation mit TECEFlex

Bemessungstabellen

R	I _F	Dim. 16	Dim. 20	Dim. 25	Dim. 32	Dim. 40
Pa/m	m			Q _{NB} [kW]		
0,6	-	2,9	5,6	11	25	56
0,8	-	3,9	6,6	13	29	66
1,0	350	4,2	7,6	15	33	75
1,2	291	4,7	8,4	16	37	83
1,4	250	5,1	9,1	18	40	90
1,6	218	5,5	9,9	19	43	97
1,8	194	5,9	11	20	45	103
2,0	175	6,4	12	22	50	112
2,5	140	7,3	13	25	56	127
3,0	116	8,1	15	28	62	140
3,5	100	8,8	16	30	67	152
4,0	87	9,5	17	33	73	160
4,5	77	10	18	35	77	
5	70	11	20	38	84	
6	58	12	22	42	93	
7	50	13	24	45	100	
8	43	14	25	48	108	
9	38	15	27	52	115	
10	35	17	30	56	125	
12	29	18	33	62	137	
14	25	20	35	67	149	
16	21	22	38	72	160	
18	19	23	40	77		
20	17	25	44	84		
25	14	28	50	95		
30	11	31	55	105		
35	10	34	60	113		
40	8	37	65	124		
50	7	42	74	141		

Tab. 1.1 Rohrdruckgefälle TECEflex – 1 bis 3 Gasgeräte, $f_g = 1$

GS K	Rohr	I _{GSmax} m				
05 K	d _a	ohne Gaszähler	mit Gaszähler			
1,6	16	66	65			
1,0	20	177	173			
	16	30	29			
2,5	20	82	78			
	25	250	240			
	16	13	12			
4	20	36	32			
	25	110	100			
	16	6	5			
6	20	17	14			
0	25	54	43			
	32	218	175			
	16	3	2			
	20	7	5			
10	25	22	17			
	32	88	70			
	40	300	290			

Tab. 2 Maximale TECEflex Rohrlänge I_{GSmax}

		D:	ъ:	ъ:	D:	5.
R	I _F	Dim. 16	Dim. 20	Dim. 25	Dim. 32	Dim. 40
		10	20		32	40
Pa/m	m			$Q_{NB}^{}\left[kW\right]$		
0,6	-	3,3	6,2	12	27	80
0,8	-	4,4	7,4	14	32	105
1,0	350	4,7	8,4	16	37	128
1,2	291	5,2	9,3	18	41	147
1,4	250	5,7	10	20	44	160
1,6	218	6,1	11	21	47	
1,8	194	6,5	12	23	54	
2,0	175	7,2	13	25	64	
2,5	140	8,2	15	28	81	
3,0	116	9,0	16	31	95	
3,5	100	9,8	18	34	109	
4,0	87	11	19	36	121	
4,5	77	11	20	38	133	
5	70	12	22	42	150	
6	58	14	24	46	160	
7	50	15	26	53		
8	43	16	28	61		
9	38	17	30	69		
10	35	19	33	81		
12	29	21	36	95		
14	25	22	39	108		
16	21	24	42	121		
18	19	26	45	133		
20	17	28	50	150		
25	14	32	65	160		
30	11	35	78			
35	10	38	89			
40	8	41	104			
50	7	47	126			

Tab. 1.2 Rohrdruckgefälle TECEflex – ab 4 Gasgeräte, $f_g < 1$

TECEflex Rohr	Kupferrohr Edelstahlrohr	Stahlrohr mittelschwer	PE SDR11
16	15	DN 10	16
20	18	DN 15	20
25	22	DN 20	25
32	28	DN 25	32
40	35	DN 32	40

Tab. 3 Gleichwertige Rohre (Mischinstallation)

Flüssiggasinstallation mit TECEFlex

Δp _{GS}	GS-T 1,6	GS-T 2,5	GS-T 4	GS-T 6	GS-T 10
Pa			$Q_{NB}[kW]$		
5	9	14	23	34	57
10	11	18	29	44	74
15	14	22	35	52	88
20	15	24	39	59	99
25	17	27	44	66	110
30	19	30	48	72	120
35	20	32	51	77	128
40	21	34	54	82	137
45	23	36	58	87	145
50	24	38	61	91	152
55	25	40	64	96	160

Tab. 4.1 Gasströmumgswächter mit TAE – 1 bis 3 Gasgeräte, $f_g = 1$

Δp _{GS}	GS-T 1,6	GS-T 2,5	GS-T 4	GS-T 6	GS-T 10
Pa			$Q_{NB}[kW]$		
5	10	16	25	38	84
10	13	20	33	51	126
15	15	24	39	72	160
20	17	27	44	89	
25	19	30	50	96	
30	21	33	60		
35	22	35	64		
40	24	38			
45	25	40			

Tab. 4.2 Gasströmumgswächter mit TAE – ab 4 Gasgeräte, $f_{\rm g}$ < 1

Verwendete Symbole und Kurzzeichen (TRGI)

Nr.	Benennung	Grafisches Symbol	Kurzzeichen	Bemerkung
1	Leitung			
2	Kreuzende Leitung			keine V——n Rohrleitungen
3	Abzweig			
4	Nennweitenübergang			hier: be 20 25 Kunststoff in d _a
5	Übergang Systembetriebs- druck			100 mbar 23 mbar
6	Werkstoffübergang			hier: von Stahl auf Kupfer weitere Rohrwerkstoffe: NRS = nichtrostender Stahl MKV = Metall-Kunststoff-Verbundrohr PE-X = PE-X-kunststoffrohr * ersetzen durch BR = Hi St Cu CP = KI * SC = Gi WE = Schweißverbindung CR = Pressfittingverbindung FL = Flanschverbindung Vorstehende Verbindungen können auch durch eigene Symbole dargestellt werden.
7	Rohrleitung in Grundriss- darstellung			0
8	Elektrische Trennung Isolierstück			—— ——
9	Potentialausgleich Erdung			<u></u>
10	Lösbare Verbindung			z. B. Ve————————————————————————————————————
11	Wand- oder Deckendurch- führung mit Schutzrohr			
12	Wand- oder Deckendurch- führung mit Schutzrohr und Abdichtung (Mantelrohr)			
13	Wand- oder Deckendurch- führung mit Schutzrohr und Brandschutzmanschette			* = R 60*
14	Leitungsabschluss			─]
15	Rohrverbindung			
16	Gas-Druckregelgerät		GR	
17	Gaszähler (Einstutzen)		Σm^3	Z
18	Gaszähler (Zweistutzen)		Σ m ³	Z
19	Druckmessgerät			—— (P)
20	Sicherheits-Gassteckdose		GSD	auch 13 kW möglich * ersetzen d 9 kW AP = Aufput UP = Unterputzsteckdose
21	Sicherheits-Gasschlauchleitung			- //

Nr.	Benennung	Grafisches Symbol	Kurzzeichen	Bemerkung
22	Absperreinrichtung		AE	Durchgangsform
23	Absperreinrichtung		AE	Eckform
24	Magnetventil			
25	Anbohrschelle			De la companya de la
26	Thermische Absperreinrichtung (TAE)		TAE	[w-O]
27	Absperreinrichtung mit kombi- nierter TAE			Durchgangsfc T
28	Absperreinrichtung mit kombi- nierter TAE			Eckform T
29	Gas-Strömumgswächter (GS)		GS	Beispiel: GS 6 6 = GS-Nennw OLder K = GS-Typ
30	Absperreinrichtung mit kombi- niertem GS			Durchgang
31	Absperreinrichtung mit kombi- niertem GS			Eckform O
32	Gas-Druckregelgerät mit kom- biniertem GS			
33	Gas-Strömumgswächter GS Typ K mit TAE kombiniert		GS-T	K = GS-Typ $K = GS-Typ$ $K = GS-Typ$ $K = GS-Typ$
34	Gassicherheitsverteiler GS Typ K mit TAE kombiniert			Der GS a wenn de T ann entfallen, am Leitungsanfang eistungsstufe hat
35	Gas-Durchlaufwasserheizer		DWH	X
36	Gas-Vorratswasserheizer		VWH	×
37	Gas-Kombiwasserheizer		кwн	
38	Gas-Heizkessel		нк	G
39	Gas-Heizstrahler		HS	
40	Gas-Raumheizer		RH	
41	Gas-Warmlufterzeuger		WLE	
42	Gasherd		н	× × × ×
43	Gas-Heizherd		нн	× × × ×

Nr.	Benennung	Grafisches Symbol	Kurzzeichen	Bemerkung
44	Gas-Kühlschrank	G	KS	
45	Gas-Wärmepumpe		WP	
46	Gas-Saunaofen		so	
47	Gas-Wäschetrockner		WT	\bigcirc
48	Gas-Grill		G	
49	Gas-Terassenstrahler		TS	
50	Gas-Blockheizkraftwerk		внкw	внкш
51	Erdgas-Kleintankstelle		ETS	ØS
52	Brennstoffzellenheizgerät		BZ	
53	Gaslaterne (Gasleuchte oder -fackel)		L	
54	Dekorative Gasfeuer für offene Kamine		DF	
55	Gas-Klimagerät		KG	

Tab. A 1 Verwendete Symbole und Kurzzeichen

Verwendete Einheiten (TRGI)

Druck	N/m ² 0 Pa	bar	mbar = hPa	mm WS	MPa
1 N/m ² = 1 Pa =	1	10 ⁻⁵ 0,00001	10 ⁻² 0,01	0,102	10 ⁻⁶ 0,000001
1 bar =	10 ⁵ 100 000	1	10 ³ 1,02 x 10 ⁴ 1000 10 200		10 ⁻¹ 0,1
1 mbar = 1 hPa =	10 ² 100	10 ⁻³ 0,001	1	10,20	10 ⁻⁴ 0,0001
1 mm WS =	1 mm WS = 9,81		9,81 x 10 ⁻² 0,0981	1	1,02 x 10 ⁻⁵ 0,0000102
1 MPa =	10 ⁶ 1000000	10	10 ⁴ 10000	1,02 x 10 ⁵ 102 000	1

Mit ausreichender Geanuigkeit kann gerechnet werden: 1 mmbar = 10 mm WS

Tab. A 2.1 Verwendete Einheiten des Druckes

Wärmemenge	kWh	MJ	J = Ws	kcal	BTU
1 kWh =			3,6 x 10 ⁶ 3600000	8,6 x 10 ² 860	3,4121 x 10 ³ 3412,1
1 MJ =			10 ⁶ 1 000 000	2,388 x 10 ² 238,8	947,8
1J = Ws =	2,778 x 10 ⁻⁷ 0,0000002778	10 ⁻⁶ 0,000001	1 1 2,000 % 10		947,8 x 10 ⁻⁴ 0,0009478
1 kcal = 1,163 x 10 ⁻³ 0,001163		4,1868 x 10 ⁻⁶ 0,0000041868	4,1868 x 10 ³ 4186,8	1	3,9683
BTU =	2 931 x 10-4		1,0551	0,2520	1

Tab. A 2.2 Verwendete Einheiten der Wärmemenge (Arbeit, Energie)

Wärmeleistung	kW	J/s = W	Mj/h	kcal/min	kcal/h
1 kW =	1	10 ³ 1000	3,6	14,33	8,6 x 10 ² 860
1J/s = W =	10 ⁻³ 0,001	1	1 3,6 x 10 ⁻³ 1,433 x 10 ⁻² 0,0036 0,01433		0,860
1 MJ/h =	0,2778	2,778 x 10 ² 277,8	1	3,98	2,388 x 10 ² 238,8
1 kcal/min =	6,9768 x 10 ⁻² 0,069768	69,768	0,2512	1	60
1 kcal/h =	/h = 1,163 x 10 ⁻³ 0,001163 1,163		4,1868 x 10 ⁻³ 0,0041868	1,667 x 10 ⁻² 0,01667	1

Tab. A 2.3 Verwendete Einheiten der Wärmeleistung (Leistung, Energiestrom, Wärmestrom)

Formblätter zum Tabellenverfahren

(siehe folgende Seiten)

Formblatt 1.1

für 1 Gasgerät (Einzelzuleitung)

Benennung Gasgerät				
Nennbelastung Q _{NB}	kW		Gesamtdruckverlust bis zum Gerät $\Delta P_g \leq 300 \text{ Pa}$	
Geräteanschlussarmatur Höhenunterschied Gerät zu Leitungsanfang			Druckverlust Geräteanschluss- armatur nach Tab. 17 a/b Druckgewinn/-verlust durch Höhe Δp_h = (-4) x H	
Rohrdimension TECEflex (d _a oder DN) R nach Tab. 20.1	Pa/m Rohrlänge I	+ = Formteilzuschlag I _{FT} nach Tab. 23	Rohrdruckverlust Δp _{Rohr} = (R x I _R) m Berechnungslänge I _R	Teilstrecke (b) ab GZ bis Geräteanschluss
Gaszähler G	ì		Druckverlust der Zählergruppe Δρ _{ZG} nach Tab. 14.1	
Rohrdimension (d _a oder DN)			Rohrart vor dem Zähler	is GZ
R nach - Tab. 20.1 (TECEflex) - TRGI Tafel 1-4	Pa/m		Rohrdruckverlust $\Delta p_{Rohr} = (R \times I_R)$	Teilstrecke (a) von HAE bis GZ
(metallene Rohrleitung)	Rohrlänge I		m Berechnungslänge I _R	eilstrec
				-
Gasströmungswächter mit TAE GS-T Typ K			Druckverlust des GS Δp_{GS} nach Tab. 19.1	
Gasströmungswächter mit TAE GS-T Typ K Übertragung Druckverlust Verteilungsleitung oder =	t aus 0			-

Formblatt 1.2

für 2 Gasgeräte

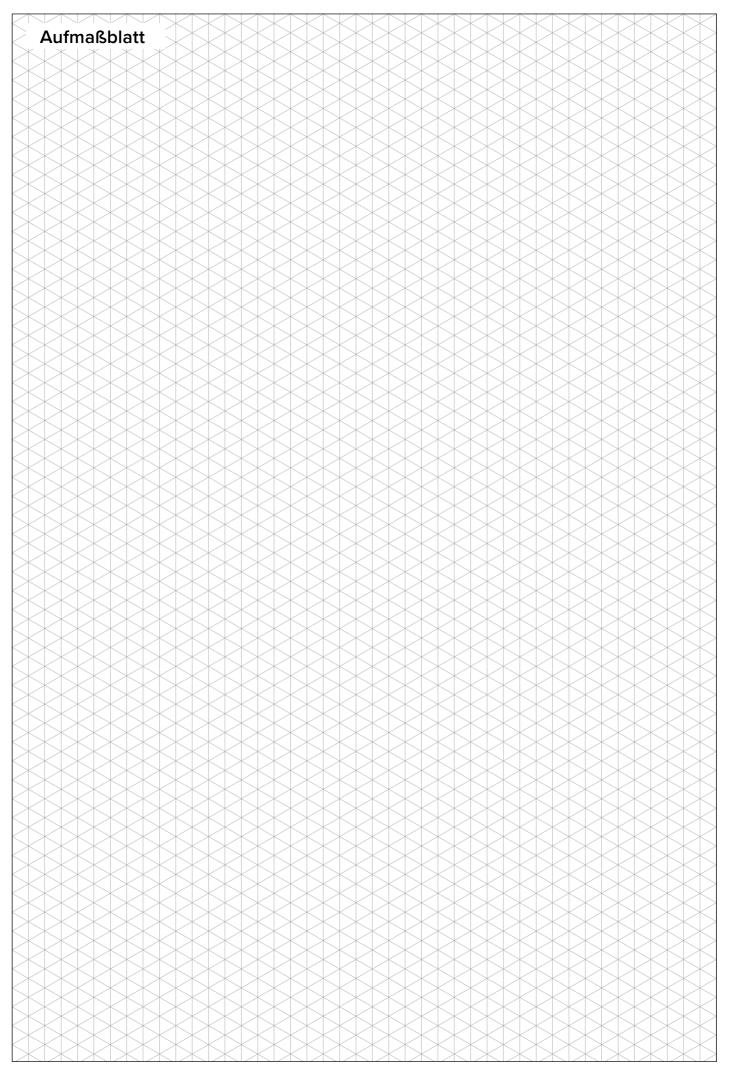
		Fließweg			Fließweg	
Benennung Gasgerät $\label{eq:decomposition} \text{Nennbelastung } \dot{\mathbb{Q}}_{NB}$	kW			kW		Gesamtdruckverlust bis zum Gerät $\Delta P_g \le 300 \text{ Pa}$
Metimographing 6/NB						Druckverlust Geräteanschluss-
Geräteanschlussarmatur						armatur nach Tab. 17 a/b
Höhenunterschied Gerät zu Leitungsanfang	m			m		Druckgewinn/-verlust durch Höhe $\Delta p_h = (-4) x H$
Rohrdimension TECEflex (d _a oder DN)			eanschluss			eanschluss
R nach Tab. 20.1	Pa/m		g bis Gerät	Pa/m		Rohrdruckverlust $\Delta p_{Rohr} = (R \times I_R)$
	+ I I _F	= <u>m</u> T ^I R	Abzweigleitung bis Geräteanschluss	Rohrlänge I	+ = Formteilzuschlag I _{FT} nach Tab. 23	Rohrdruckverlust $\Delta p_{Rohr} = (R \times I_R)$ m Berechnungslänge I _R
Zusätzlicher Gasströmungs- wächter mit TAE GS-T Typ K						Druckverlust des GS Δp_{GS} nach Tab. 19.2
Streckenbelastung	kW		Gesamtdrı Zählerleitu			
Rohrdimension TECEflex (d _a oder DN)			Rohr nach	dem Zähler	zweig (c)	
R nach Tab. 20.2	Pa/m		Rohrdruck ∆p _{Rohr} = (brauchsleitung Istrecke (b) von GZ bis Abzweig (c)	
	Rohrlänge I	+ = Formteilzuschlag I _{FT} nach Tab. 23	Berechnun		Verbrauchsleitung Teilstrecke (b) von	
Gaszähler G	i		Druckverlu ∆p _{ZG} nach	ıst der Zählergruppe 1 Tab. 14.2	9	
Rohrdimension (d _a oder DN)			Rohr vor de	em Zähler	ois GZ	
R nach - Tab. 20.2 (TECEflex) - TRGI Tafel 1-4	Pa/m		Rohrdruck $\Delta p_{Rohr} = ($	(R x I _R)	Verbrauchsleitung Teilstrecke (a) von HAE bis GZ	
(nicht TECEflex)	Rohrlänge I	Formteilzuschlag I _{FT}	Berechnun	m ngslänge I _R	Verbrauc Teilstrec	
Gasströmungswächter mit TAE GS-T Typ K			Druckverlu ∆p _{GS} nach	ıst des GS n Tab. 19.2		
Übertragung Druckverlust au Verteilungsleitung oder = 0	5					

Beständigkeitsliste PPSU

Markenname	Datum	Konzentration	Hersteller	Verwen- dung
Kühlschmierstoffe	,			
Castrol nonol Kühlschmierstoff		100 %	Castrol	verboten
Rocol RTD		100 %		verboten
Kühlschmierstoff M200 Nr. 1	Juni 2009	100 %		verboten
Desinfektionsmittel	,			- '
FINKTEC FT-99 CIP		6 %	Finktec GmbH	verboten
Mikro Quat		100 %	Ecolab	verboten
Mikrobac forte		1 %, 23 ℃	Bode Chemie	erlaubt
Wasserstoffperoxid		35 %, 23 ℃		erlaubt
Kaliumpermanganat KMnO4		15 mg/l, 23 °C		erlaubt
Natriumhypochlorit NaOCI		> 6 %, 23 °C		erlaubt
Calciumhypochlorit Ca(CIO)2		50 mg/l, 23 °C		erlaubt
Chlorodioxid CIO2		6 mg/l, 23 °C		erlaubt
Aniosteril D2M	Juni 2009	5 %	Laboratoires Anios	erlaubt
Aniosteril Contact	Juni 2009	1 %	Laboratoires Anios	erlaubt
Witty W4		2 %, 23 °C, 4 h		erlaubt
Entkalker				
DS-40		4 %		verboten
Kessellärmschutz		0,20 %		erlaubt
Calcolith DP		10 %, 40 °C, 24 h		erlaubt
Calcolith TIN-BE		5 %, 80 °C, 24 h		erlaubt
Haushaltsentkalker (Schnellentkalker)		20 %		erlaubt
LS1		0,60 %		erlaubt
MB1		4 %		erlaubt
Super Concentrate		0,20 %		erlaubt
Superfloc		2 %		erlaubt
Reinigungsmittel	1			
Arkopal 110		5 %	Hoescht	verboten
ANTIKAL		100 %	P&G	verboten
BREF - Bad		100 %	Henkel	erlaubt
BREF - Frische Dusche		100 %	Henkel	erlaubt
CAROLIN - Glanzreiniger		1,80 %	Boltom Belgium	erlaubt
CAROLIN - aktiv frisch		1,90 %	Boltom Belgium	erlaubt
CAROLIN - mit Leinsamenöl		1,90 %	Boltom Belgium	erlaubt
CAROLIN - Marseille Seife		1,80 %	Boltom Belgium	erlaubt
Meister Proper - Zitrone		3,40 %	P&G	verboten
Meister Proper - Extra Hygiene		3,50 %	P&G	erlaubt
Meister Proper - empfindliche Oberflächen		2,40 %	P&G	verboten
Meister Proper - Orangenschale		3,40 %	P & G	verboten
Meister Proper - Winterfrisch		3,40 %	P & G	verboten
TERRA - Steinböden		12 %	Henkel	erlaubt
TERRA - Parkett		3,20 %	Henkel	erlaubt
TERRA - Hochglanzböden	Juni 2009	100 %	Henkel	erlaubt

Markenname	Datum	Konzentration	Hersteller	Verwen- dung
Dichtungen				_
Cimberio Loxeal 58 11 PTFE Gewindedichtung		100 %		verboten
Dreibond 5331		100 %, 23 °C	Dreibond	verboten
EPDM Gummi O-Ring		100 %	Join de France	erlaubt
Easyfit (Griffon)	Juni 2009	100 %	Bison International	verboten
Everseal Rohrgewindedichtung		100 %, 82 °C	Federal Process Corp.	verboten
FACOT PTFE SEAL (PTFE Dichtung)		100 %		verboten
Filjoint	Juni 2009	100 %	GEB	verboten
FILETPLAST EAU POTABLE	Juni 2009	100 %	GEB	erlaubt
GEBATOUT 2	Juni 2009	100 %	GEB	erlaubt
GEBETANCHE 82 (EX-GEB)	Juni 2009	100 %	GEB	verboten
Griffon Montagekit		100 %	Verhagen-Herlitzius BV.	erlaubt
Kolmat jointpaste (- 30 bis + 135 °C)		100 %	Denso	erlaubt
Locher Paste Spezial		100 %	Locher & Co AG	erlaubt
Loctite 5061		100 %	Loctite	erlaubt
Loctite 518 Dichtungseliminator		100 %, 82 °C	Loctite	verboten
Loctite 5331	Juni 2009	100 %	Loctite	erlaubt
Loctite 5366 silicomet AS-310		100 %	Loctite	erlaubt
Loctite 542		100 %, 23 ℃	Loctite	verboten
Loctite 55	Juni 2009	100 %	Loctite	verboten
Loctite 572 Gewindedichtung	Juni 2009	100 %, 60 ℃	Loctite	verboten
Loctite 577		100 %, 23 ℃	Loctite	verboten
Loctite Dryseal	Sep. 2008	100 %	Loctite	erlaubt
Manta Tape		100 %		erlaubt
Multipak		100 %		erlaubt
Neo-Fermit		100 %	Nissen & Volk	erlaubt
Neo-Fermit Universal 2000		100 %	Nissen & Volk	erlaubt
Plastic Fermit - Dichtung		100 %	Nissen & Volk	erlaubt
Precote 4		100 %	Omnifit	verboten
Precote 80		100 %	Omnifit	verboten
RectorSeal # 5		100 %, 82 °C	RectorSeal Corp.	verboten
Red Silicone Sealant (- 65 bis + 315 °C) Silikon-Dichtungsmittel		100 %	Loctite	erlaubt
Rite-Lok		100 %	Chemence	verboten
Scotch-Grip Kautschuk & Dichtungskleber # 1300		100 %, 82 °C	3M	verboten
Scotch-Grip Kautschuk & Dichtungskleber # 2141		100 %, 82 °C	3M	verboten
Scotch-Grip Kautschuk & Dichtungskleber # 847		100 %, 82 °C	3M	verboten
Selet Unyte		100 %, 82 °C	Whitman	verboten
Tangit metalock	Apr. 2007	100 %	Henkel	verboten
Tangit Racoretanche	Juni 2009	100 %	Loctite	erlaubt
Tangit Unilock	Juni 2009	100 %	Henkel	verboten
TWINEFLO (PTFE band) + Verarbeitungsmittel		100 %	Resitape / Ulith	erlaubt
Twineflon	März 2009	100 %	Unith	erlaubt
Unipack	Mai 2006	100 %		verboten
Unipack Packsalve		100 %		erlaubt
Viscotex Locher Paste 2000		100 %		erlaubt

Markenname	Datum	Konzentration	Hersteller	Verwen- dung
Kleber				3
Atmosfix	Juli 2009	100 %	Atmos	verboten
ARMAFLEX 520 KLEBER ADHESIVE	Dez. 2008	100 %, 50 °C		verboten
ARMAFLEX HT 625	Dez. 2009	100 %, 50 °C		verboten
BISON SILIKONENKIT SANITAIR		100 %		erlaubt
Bison-Tix Kontaktkleber		100 %, 23 °C	Perfecta International	verboten
CFS SILICONE SEALANT S-200 Silikon Dichtungsmittel)		100 %		erlaubt
Colle Mastic hautes Performances	Juni 2009	100 %	Orapi	erlaubt
Epoxy ST100	Juli 2007	100 %		verboten
GENKEM CONTACT ADHESIVE (KONTAKTKLEBER)		100 %		verboten
GOLD CIRCLE SILICONEKIT BOUW TRANSPARENT		100 %		erlaubt
Knauf Sanitär-Silikonkit		100 %		erlaubt
Knauf Siliconkit für Acryl	Juli 2009	100 %	Henkel	erlaubt
Pattex colle rigide PVC		100 %		verboten
PEKAY GB480 (Vidoglue) Kleber		100 %		verboten
PEKAY GB685 (Insulglue) Kleber		100 %		erlaubt
Repa R 200		100 %		erlaubt
RUBSON SILIKON SANITÄR TRANSPARENT SET		100 %	Rubson	erlaubt
RUBSON SILIKON SANITÄR TRANSPARENT SET		100 %	Rubson	erlaubt
Wasserabweisender Holzleim		100 %		erlaubt
Schäume				
BISON PUR SCHAUM	März 2009	100 %		verboten
Boxer Montageschaum	Feb. 2007	100 %		verboten
Gunfoam - Winter - Den Braven East sp. z o.o.	Feb. 2007	100 %		verboten
Gunfoam Proby	Feb. 2007	100 %		verboten
Hercusal	Feb. 2007	100 %		verboten
MODIPUR HS 539	Juli 2009	100 %	Wickes	verboten
MODIPUR US 24 TEIL 2	Juli 2009	100 %		verboten
MODIPUR HS 539 / US 24 TEIL 2 (1/1)	Juli 2009	100 %		verboten
PUR Schaum (enthält Diphenylmethan-4,4-Diisocyanat)		100 %		verboten
O.K 1 K PUR		100 %		verboten
Omega Faum - Schaum	Feb. 2007	100 %		verboten
Proby Montageschaum	Feb. 2007	100 %		verboten
PURATEC - 1 K PUR		100 %		verboten
PURATEC - 2 K PUR		100 %		verboten
Ramsauer PU-Schaum	Juli 2009	100 %		verboten
Schacht- und Brunnenschaum Klima plus		100 %		verboten
Soudal Montageschaum für tiefe Temperaturen	Feb. 2007	100 %		verboten
SOUDAL Pistolenschaum Soudalfoam -10	Feb. 2007	100 %		verboten
SOUDAL PU-Schaum	Juli 2009	100 %		verboten
Türmontageschaum 2-K Klima plus		100 %		erlaubt
TYTAN Professional Pistolenschaum Winter	Feb. 2007	100 %		verboten
TYTAN Professional für PCV Pistolenschaum	Feb. 2007	100 %		verboten
TYTAN Professional Lexy 60 Niederdruck	Feb. 2007	100 %		verboten
TYTAN Euro-Line Montageschaum	Feb. 2007	100 %		verboten


Markenname	Datum	Konzentration	Hersteller	Verwen- dung
TYTAN Professional für PCV Montageschaum	Feb. 2007	100 %		verboten
ZIMOWA SUPER PLUS - (Montageschaum)	Feb. 2007	100 %		verboten
Schmierfette				
BAYSILONE ÖL M 1000		100 %		erlaubt
BECHEM BERUSOFT 30		100 %	bechem	erlaubt
Bechem Berulube Sihaf 2	Mai 2008	100 %	bechem	erlaubt
Dansoll Silec Blue Silicone Spray (Silikon-Spray)		100 %	dansoll	erlaubt
Dansoll Super Silec Sanitär-Montagepaste		100 %	dansoll	erlaubt
Huile de chenevis		100 %		erlaubt
Kluber Proba 270		100 %	Kluber	erlaubt
Kluber Paralig GTE 703		100 %, 80 °C, 96 h	Kluber	erlaubt
Kluber Syntheso glep1		100 %, 135 °C, 120 h	Kluber	verboten
KLÜBERSYNTH VR 69-252		100 %	Kluber	erlaubt
Kluber Unislikikone L641		100 %	Kluber	erlaubt
Kluber Unislikikone TKM 1012		100 %, 80 °C, 96 h	Kluber	erlaubt
OKS 462 / 0956409		100 %	Kluber	erlaubt
OKS 477 HAHNFETT		100 %	Kluber	erlaubt
Laureat Zloty Installator		100 %		erlaubt
Luga Srpay (Leif Koch)		100 %	Leif Koch	erlaubt
Rhodorsil 47 V 1000		100 %, 80 °C, 96 h		erlaubt
SiliKon Spray (Motip)		100 %	Motip	erlaubt
silicona lubricante SDP ref S-255		100 %		erlaubt
Silkonöl M 10 - M 100000		100 %		erlaubt
Silikonöl M 5		100 %		erlaubt
Turmisilon GL 320 1-2		100 %		erlaubt
UNISILIKON L250L	Juni 2008	100 %		erlaubt
Wacker Silikon		50 %, 95 °C, 96 h	Wacker	verboten
Metalle				
Kupferionen (Cu 2+)		50 ppm		erlaubt
Lötflussmittel S 39	Juni 2009	100 %		erlaubt
Lötflussmittel S 65	Juli 2009	100 %		verboten
YORKSHIRE FLUX		100 %		verboten
Degussa Degufit 3000		100 %	Degussa	erlaubt
Aluminiumionen (Al 3+)		50 ppm		erlaubt
Atmosflux	Juli 2008	100 %		erlaubt
Lacke				
Sigma Superprimer TI		100 %	Sigma Coatings	erlaubt
Sigma Amarol		100 %	Sigma Coatings	erlaubt
Decalux		100 %	De Keyn Paint	erlaubt
Permaline		100 %	ITI-Trimetal	erlaubt
Silvatane		100 %	ITI-Trimetal	erlaubt
DULUX wasserbasierender Hochglanz-Lack		100 %	ICI	verboten
DULUX wasserbasierender Seidenglanz-Lack, Satin		100 %	ICI	verboten
DULUX für mikroporöses Holz, Seidenglanz		100 %	ICI	erlaubt
DULUX Bodenfarbe, sehr widerstandsfähig, Seidengl.		100 %	ICI	erlaubt
DULUX Metallfarbe, antikorrosion, Hochglanz		100 %	ICI	erlaubt

Markenname	Datum	Konzentration	Hersteller	Verwen- dung
Hammerite weiß, Seidenglanz		100 %	ICI	erlaubt
Hammerrite weiß, Hochglanz, basierend auf Xyleen		100 %	ICI	verboten
Hammerite silbergrau Hochglanz, basierend auf Xyleen		100 %	ICI	erlaubt
Boss Satin		100 %	BOSSPAINTS	erlaubt
Hydrosatin Interior		100 %	BOSSPAINTS	erlaubt
Carat		100 %	BOSSPAINTS	erlaubt
Bolatex		100 %	BOSSPAINTS	erlaubt
Optiprim		100 %	BOSSPAINTS	erlaubt
Elastoprim		100 %	BOSSPAINTS	erlaubt
Plastiprop		100 %	BOSSPAINTS	verboten
Formule MC		100 %	BOSSPAINTS	verboten
MAPEGRUNT		100 %	Mapei	erlaubt
DULUX PRIMER		100 %	ICI	erlaubt
UNI-GRUNT		100 %	Atlas	erlaubt
Wandspachtel und Bauprodukte				
Bituperl (isolierender Füllstoff mit Bitumen)		100 %		erlaubt
Isolieranstrich mit Bitumen		100 %		erlaubt
Kaltkleber für Bitumenpapier		100 %		erlaubt
Climacoll Kleber für Rohrisolierungsschaum		100 %		verboten
Compactuna		6 %		erlaubt
FERROCLEAN 9390	Feb 2008	100 %		erlaubt
FT-extra		100 %		erlaubt
Giso Grundprimer		100 %		verboten
KNAUF STUC PRIMER	Juli 2009	100 %		erlaubt
Mellerud Schimmelvernichter		100 %		erlaubt
Mineralwollsiolierung mit Sperrschicht gegen Metall- dampf	Juli 2007	100 %		verboten
Nivoperl (isolierender Füllstoff)		100 %		erlaubt
PCI LASTOGUM	Feb 2008	100 %		erlaubt
PCI Seccoral 1K	Feb 2008	100 %		erlaubt
Perfax Rebouche tout	Juli 2009	100 %		erlaubt
PE Rohr Isolierungsschaum		100 %		erlaubt
Polyfilla Innenwand-Füllstoff		100 %	Polyfilla	erlaubt
Porion Sofortspachtel		100 %	Henkel	erlaubt
Porion Mörtel für Reparaturen		100 %	Henkel	verboten
Portland Cement - Zement		100 %	CBR	erlaubt
RIKOMBI KONTAKT (RIGIPS)		100 %		erlaubt
Selbstklebende Isolierung PE-Schaum (Wickelband)		100 %		verboten
SOPRO FDH 525 (Flüssigfolie)	Sep. 2008	100 %		erlaubt
Stucal Putz		100 %	Gyproc	erlaubt
TANGIT REINIGER	Juli 2007	100 %		verboten
TANGIT Spezialreiniger	Juli 2007	100 %		erlaubt
Fliesenkleber		100 %		erlaubt
Universalgrundierung		100 %		erlaubt
Holz-Beton Multiplex Bruynzeel (Dämpfe von)		100 %		verboten
Holz Kiefernholz (Dämpfe von)		100 %		verboten

Markenname	Datum	Konzentration	Hersteller	Verwen- dung
Holz MDF mitteldichte Faserplatte (Dämpfe von)		100 %		verboten
Holz Multiplex wasserdicht geklebt (Dämpfe von)		100 %		verboten
Anti-Termite				
Aripyreth Oil Solution		100 %, 23 °C		erlaubt
Baktop MC		100 %, 23 °C		erlaubt
Ecolofen CW		100 %, 23 °C		erlaubt
Ecolofen Emulsificable Concentrate - Emulgierbares Konzentrat		100 %, 23 °C		erlaubt
Ecolofen Oil Solution - Öllösung		100 %, 23 °C		erlaubt
Grenade MC		100 %, 23 °C		erlaubt
Hachikusan 20WE/AC		100 %, 23 °C		erlaubt
Hachikusan FL		100 %, 23 °C		erlaubt
Kareit Oil Solution - Öllösung		100 %		erlaubt
Rarap MC		100 %, 23 ℃		erlaubt
Korrosionsinhibitoren				
BAYROFILM T 185		0,30 %		erlaubt
Copal Korrosionsinhibitor	April 2007	100 %		erlaubt
KAN-THERM	Sep. 2008	100 %		erlaubt
INIBAL PLUS	Sep. 2008	100 %		erlaubt
NALCO VARIDOS 1PLUS1	Jan. 2009	2 %, 23 & 95 ℃		erlaubt
Lecksuchprays				-
Weicon 11654400 Lecksuchspray frostsicher	Jan. 2022	100 %, 23 °C & 60 °C & 95 °C		erlaubt
OKS 2811 Lecksucher, frostsicher, Spray	Jan. 2022	100 %, 23 °C & 60 °C & 95 °C		erlaubt
Helling Proof Check Plus	Jan. 2022	100 %, 23 °C & 60 °C & 95 °C		erlaubt
LIQUI MOLY Lecksuchspray		100 %, 23 ℃		erlaubt
Multitek Gasleckspray		100 %		verboten
Sherlock Gasleckmelder		100 %		erlaubt
Ulith Leckdetektorspray	Sep. 2008	100 %		erlaubt
LECK-SUCH-SPRAY 400ML (ART. 3350)	Jan. 2009	100 %, 23 °C & 95 °C		erlaubt
LECK-SUCH-SPRAY 400ML (ART. 1809)	Jan. 2009	100 %, 23 °C & 95 °C		erlaubt
LECKSUCHER PLUS (ART. 890-27)	Jan. 2009	100 %, 23 °C & 95 °C		erlaubt
LECKSUCHER 400 ML (ART. 890-20)	Jan. 2009	100 %, 23 °C & 95 °C		erlaubt
LECKSUCHERSPRAY ROTEST	Jan. 2009	100 %, 23 °C & 95 °C		erlaubt
GUPOFLEX LEAK-SEEKER (ART 301) Lecksucher	Jan. 2009	100 %, 23 °C & 95 °C		erlaubt
LECKSUCHER 5 L (ART 4120)	Jan. 2009	100 %, 23 °C & 95 °C		erlaubt
GUEPO LEAK-SEEKER ETL (ART 121) Lecksucher	Jan. 2009	100 %, 23 °C & 95 °C		erlaubt
GUEPO LEAK-SEEKER SOAPLESS (ART 131) Lecksucher ohne Seife	Jan. 2009	100 %, 23 °C & 95 °C		erlaubt
GASLEAK DETECTOR (GRIFFON)	Juni 2009	100 %, 60 °C		erlaubt
GASLEAK DETECTOR KZ Gasleckdetektor	Juni 2009	100 %, 60 °C		erlaubt

Die Angaben in dieser Tabelle sind nach bestem Gewissen erstellt worden und dienen der allgemeinen Informationen. Die Ergebnisse der Tabelle zeigen typische Durchschnittswerte aus einer repräsentativen Anzahl einzelner Messergebnisse. Die Werte sind in keinem Fall als Spezifikationen anzusehen.

TECE übernimmt darüber hinaus auch keine Gewähr bei Anwendung von Produkten, die nicht in dieser Liste aufgeführt sind.

